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Chapter 0
Introduction

The genetic algorithm (GA) is a powerful computational technique for opti-
misation. The aim of this thesis is to establish a formal language for applying
this technique in the context of strategic game theory, and to illustrate it with
worked examples drawn from real-world game theory problems.

Due to their heuristic nature, the methods outlined here can be used
during the exploratory stages of problem analysis (to get an idea of the
solution landscape, or to find approximate solutions), before the analytical
theory has been developed.

While important work has already been done in the field of GA applica-
tions to game theory, it has been predominantly approached from the eco-
nomic and computer theoretic angle; as a consequence, some of the work
has lacked mathematical rigour. This thesis attempts to formalise some of
the previously developed concepts, using game theoretic language that has
been developed in the previous 15 years, by introducing a genetic algorithm
specifically for games.

The main points of interest in this thesis are a revisit of an important
1987 experiment staged by Robert Axelrod (described in [Axelrod, 1987]),

with the aim of clearing up some of the finer implementation points using
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more formal notation, and an illustration of how the genetic game algorithm
(GGA) may be used to heuristically search for Nash equilibria in extensive
games, using a model called the Contract Game (taken from [Huck et al.,
2003]). Both include experimental analysis, using the simulation that was
created based on the theory in this thesis.

The application of Markov chain theory to the analysis of genetic al-
gorithms has yielded some interesting results concerning convergence. The
research done in this thesis can be extended by further investigation into
the possibility of transferring Markov theory to the genetic algorithms in the
domain of games.

The chapter breakdown is as follows: Chapters 1 and 2 provide intro-
ductions to the genetic algorithm and game theory, respectively. Chapter
3 ties the exposition from Chapters 1 and 2 together by providing several
versions of the GGA. Chapter 4 applies the material from Chapter 3 to Ax-
elrod’s experiment. Chapter 5 focuses on the Contract Game model, first
tackling it analytically and then using the GGA; a comparison of the two ap-
proaches is then made. Chapter 6 is the conclusion. The appendices contain
details about the simulation code for this thesis (Appendix A), and various

miscellaneous information (Appendices B and C).



Chapter 1

The Genetic Algorithm

The purpose of this chapter is to define a vocabulary of terms and concepts
that are necessary for our discussion of genetic algorithms (Section 1.1), to
give a basic introduction to genetic algorithms (Section 1.2), and to illustrate
the presented ideas using one specific algorithm: the Canonical Genetic Al-
gorithm (CGA) (Section 1.3).

1.1 Introduction

A genetic algorithm (GA) is an algorithmic search technique used to find ap-
proximate solutions to optimisation and search problems. The GA’s primary
application is in situations where a multidimensional, non-linear function
needs to be maximised /minimised, and the solution need not be exact, but
rather ”good enough”. Genetic algorithms belong to the class of methods
known as "weak methods” in the Artificial Intelligence community because
they makes relatively few assumptions about the problem that is being solved
- this makes GAs ideal for "feeling out” a problem domain and finding solu-
tion candidates, prior to launching into in-depth theoretical analysis.

The GA has three main components, (the first two of) which mimic sim-

3



4 CHAPTER 1. THE GENETIC ALGORITHM

ilar concepts in biological evolution:
1. a sequence of chromosome populations

2. a genetic mechanism which allow a population to be generated from its
predecessor; this mechanism mirrors the main evolutionary processes -

fitness evaluation, selection, recombination and mutation.
3. a terminating condition
We shall now give definitions and explanations of the above terms:

e In this context, a chromosome (or binary string) b = (b1, by, ..., b,,)

of length m is a sequence of m genes. Each gene is a binary number:
b; € {0,1} Vi.

e A population of size n is a collection of n chromosomes of equal
length; because a unique chromosome can appear more than once in a

population, we represent it with an n-tuple, rather than a set.

e The genetic mechanism (mentioned earlier) is best thought of as a
stochastic function 2 that transforms one population into another (of
equal size); thus, it is possible for us to define a population sequence
(P(7))i>0, such that

PG +1)=Q(P()) Vi =0 (1.1)

The i** population in the population sequence is often referred to as
generation i, or the i" generation. The 0" population (generation
0), commonly called the initial population, is the starting point for

the algorithm and is passed to it as a parameter.

e Encoding/decoding connects points in the problem domain to chro-

mosomes - the initial population may be comprised of encoded points
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from the problem domain (for example, if the approximate area of the
fitness maximum is known before the GA is run, the initial population
may be "seeded” by points from this area), and a chromosome from
the final generation can be decoded back into a problem domain point

when the GA run terminates.

Fitness evaluation is a process that assigns a quantitative value to
chromosome, based on some metric. That metric may be dynamic
(that is, the fitness of a chromosome relies on what the other chromo-
somes in the population are) or static (the fitness of a chromosome is

independent of the other chromosomes in the population).

Selection is a process that can be thought of as a gate-keeper - it
regulates which chromosomes from one generation play a part in the
next generation, and which do not. Selection improves the overall pop-
ulation fitness by preventing the propagation of chromosomes with low

fitness values.

Crossover, or recombination is a process that can create two new
chromosomes (children) from two existing chromosomes (parents); each
child shares genes with both of its parents. Crossover facilitates the

creation of chromosomes that combine the "best” parts of its parents.

Mutation is a process that stochastically makes small changes to chro-
mosomes. Mutation helps prevent premature homogeny of a population
and facilitates discovery of previously unvisited optima in the search

space.

The terminating condition, when satisfied, signals the end of the
GA run - this condition may be chosen to assert whether the best or

average fitness has reached a certain (minimum) level, or perhaps the
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condition may be a time constraint (that is, it may assert whether a

generation has been reached or not).

e When we talk about population sequence convergence, we refer
to the situation when a high level of homogeny exists within the pop-
ulation sequence over several generations; this usually implies that the
chromosomes represent a (local or global) maximum of the fitness func-

tion.

The simple description of the GA inner workings is that starting with
an initial population of chromosomes, subsequent generations are created by
putting the previous generation through the genetic mechanisms. The GA
is designed so that both the maximum and average fitness of strategies in
each generation are predominantly increasing! with time - new populations
continue to be generated until the terminating condition is satisfied.

In a strict interpretation, the genetic algorithm refers to a model intro-
duced and investigated by John Holland [Holland, 1975] and by students of
Holland (e.g. [DeJong, 1975]). It is still the case that most of the exist-
ing theory for genetic algorithms applies either solely or primarily to the
model introduced by Holland, as well as variations on the canonical genetic

algorithm (see Section 1.3.1)%

1.1.1 Remarks

Unlike some other global search methods, genetic algorithms does not use
gradient information; this also makes their use appropriate in problems in-

volving non-differentiable functions, or functions with multiple local optima.

IThe fitness increase is not monotonic - fluctuations on the local time-frame are normal,

but overall growth is generally observed.
2[Whitley, 1994]
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The fact that GAs make relatively few assumptions about the problem
that is being solved, is an advantage when creating a software implementation
of a GA: time can be saved by using ”off-the-shelf” components, instead
of creating them from scratch - numerous software GA frameworks (which
implement the commonly used mutation, selection and crossover functions)

exist already.

The GA’s generality brings a certain degree of robustness, but the down-
side is that domain-specific methods, where they exist, often out-perform
the GA in terms of computational cost. A common technique is to try to
take the best from both worlds, and to create hybrid algorithms from the

combination of GAs and existing methods.

When adapting the GA to their specific needs, problem solvers need to
make sure that they are performing the correct optimisation - unless an
appropriate choice of fitness function is made, the output of the genetic

algorithm may not be useful to the original problem.

The theory of Markov chains has been demonstrated to be a very power-
ful tool for the theoretical analysis of GAs. There are mainly two approaches
to modeling GAs as Markov chains. The first approach, called population
Markov Chain model, views the sequence of population in GAs as finite
Markov chains on population space( Eiben, Aarts, and Hee (1991), Fogel
(1994), Rudolph (1994)), Leung, Gao and Xu (1997)), while the second ap-
proach models the GAs by identifying the states of the population with prob-
ability vectors over the individual space® (Reynolds and Gomatam (1996),
Vose (1996)).

3See Section 1.3.1 for explanation of what an individual space is.
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1.2 Genetic Algorithm Specifics

An implementation of a genetic algorithm begins with a population of (typ-
ically random) chromosomes. One then evaluates these structures and allo-
cates reproductive opportunities in such a way that those chromosomes which
represent a better solution to the target problem are given more chances to
"reproduce” than those chromosomes which are poorer solutions. The ”good-

ness” of a solution is typically defined with respect to the current population.

It is helpful to view the main execution loop of the genetic algorithm as a
two stage process. It starts with the fitness evaluation of the current popula-
tion. Selection is applied to the current population to create an intermediate
population. Then crossover (recombination) and mutation are applied to
the intermediate population to create the next population. Crossover can
be viewed as creating the next population from the intermediate population.
Crossover is applied to randomly paired chromosomes with a probability de-
noted p, (the population should already be sufficiently shuffled by the random
selection process). Pick a pair of chromosomes. With probability p. ”recom-
bine” these chromosomes to form two new chromosomes that are inserted
into the next population. The process of evaluation, selection, crossover and

mutation forms one generation in the execution of a genetic algorithm.
We can summarise these steps in a flowchart (Figure 1.1).

The pseudo-code representation of the GA can be seen in Listing 1.1.
Usually there are only two main components of most genetic algorithms that
are problem dependent: the problem encoding and the evaluation function.
The remaining components can be reused, and only their parameters (such
as the mutation parameter, crossover parameter, population size) are tuned

to fit the simulation.

As we mentioned earlier, we can divide the fitness metrics into two groups

- dynamic and static. With a static fitness function, the fitness of a chromo-
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Generate Initial
Chromosome
Population

Evaluate fitness
of the initial pop'n,
set it as the
current pop'n

Is Terminating
Condition
Satisfied?

Evaluate fitness
of the current pop'n

Select from the current
population to get
the intermediate

population

Crossover intermediate
population to get
the new population

Analyse
results

Mutate the new
population,
set it as the
current pop'n

Figure 1.1: The GA flowchart
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i=0 // set generation number to zero
initpopulation P(0) // initialise a usually random population of individuals
evaluate P(0) // evaluate fitness of all initial individuals of population
while (not done) do // test for termination condition (time, fitness, etc.)
begin

evaluate P(1) // evaluate the fitness

i=1i+4+1 // increase the generation number

select P(i) from P(i—1) // select a sub-population for offspring reproduction
recombine P(1i) // recombine the genes of selected parents
mutate P(1) // perturb the mated population stochastically

end

Listing 1.1: Genetic Algorithm Pseudo-code

some in a population is independent of the fitness of the other chromosomes
in the same population - the fitness value of a chromosome is absolute. With
a dynamic fitness function, the fitness values are interdependent within a
population - the fitness value of a chromosome is relative. This means that
with a static fitness function, chromosomes from different populations can
be compared and ranked by their fitness values; this is not possible with a
dynamic fitness function, because a chromosome’s fitness only makes sense
in the context of the population that it is in. The type of fitness function
depends on the nature of the landscape being searched by the GA - if the GA
is optimising a variable Examples of both types appear in this thesis: the
original Axelrod experiment in Chapter 4 uses a static fitness function, while

the contract game experiment in Chapter 5 uses a dynamic fitness function.

1.3 The Canonical Genetic Algorithm

We now provide an example of a genetic algorithm: the canonical genetic
algorithm. The CGA defines specific selection, crossover and mutatation
functions, but the fitness, the encoding/decoding functions and the termi-

nating condition all remain problem /simulation specific. Here, we adopt the
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more mathematically formal notation that shall be used extensively in later

chapters.

1.3.1 Formal Definition

Taken from Gao [1998]:

We consider the GAs with binary string representations of the encoding
length 1 and the fixed population size n. The set of chromosomes, or indi-
viduals (encoded feasible solutions) is denoted by B = {0,1}! and is called
the individual space. The set of populations with size n is denoted by B™.
Particularly, we call B> = B x B the parents space. The fitness function
f: B — R{ can be derived from the objective function of the optimization
problem by a certain decoding rule.

With respect to selection in the CGA, the probability that chromosomes
in the current population are copied (i.e., duplicated) and placed in the
intermediate generation is proportion to their fitness. We view the population
as mapping onto a roulette wheel, where each individual is represented by a
space that proportionally corresponds to its fitness. By repeatedly spinning
the roulette wheel, individuals are chosen using ”stochastic sampling with

replacement” to fill the intermediate population.

Definition 1 (Roulette Wheel Selection). The proportional selection op-
erator, “AT/ : B" — B2, selects a pair of parents from the given population
for reproduction, based on the relative fitness (which is defined by function f)
of the indiwvidual in the population. Given the population )Z', the probability
of selecting (X;, X;) € B? as the parents is

X))
S ex X)) Taex S0

P{ATI(X) = (X:, X))} (1.2)

with1 <1<n,1<j5<n.
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For crossover, the CGA uses a technique known as 1-point crossover.
Given two parents, this function generates the first child by first choosing
a random position, and then substituting with the crossover probability p.,
the gene segment after the chosen position in the first parent by the gene
segment after the chosen position in the second parent. The second child is
formed from the left-over segments from the parents. With probability 1—p,,
the children are simply the parents.

Definition 2 (1-point Crossover). For x = (z1,...,2;) € B, y = (y1,...,y1) €
B, AT, : B> — B? is defined as:

P(“T(2,y) = (x,y)) = 1-pe (1.3)

p<GATc<x7y) = (Zk,U)k>> = % Vk = 17 al (14)

where 2k = (L1, ooy Thy Y1y o, Y1) ANA Wk = (Y1, oovy Yk Thr1y ooy T1)-
Example 1 (1-point Crossover). Consider binary chromosomes 1101001100
and yryyryrryy (in the latter, the values 0 and 1 are denoted by x and y).

Using a single randomly chosen recombination point, 1-point crossover occurs

as follows:

11010 \/ 01100
yxyyx /\ yxxyy

Swapping the fragments between the two parents produces the following off-

spring:
11010yxxyy and yryyx01100

The mutation used in the CGA flips the selected bit (as opposed to gen-

erating a random replacement for it).
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Definition 3 (Mutation). The mutation operator, ““T,, : B — B, oper-
ates on the individual by independently perturbing each gene in a probabilistic

manner and can be specified as follows:

PO (X) = ¥} = ¥ 1(1 = pp) Y] (15)

where p,, 15 the mutation probability.

Finally, we can give the recursive definition of the population sequence in

the CGA.

Definition 4. Based on the genetic operators defined above and a given ini-
tial population X (0) of size n, the canonical genetic algorithm (CGA)

can be represented as the following iteration of populations:
X(k+1) = {T3(TATAX(K)), i = 1,..on}, k>0 (1.6)
where (T ,T?), i = 1,...,n are independent versions of (““T,,, ““T,) and

(T, T¥) =GATI j =1, g (1.7)

where “ATI are independent versions of “AT,.
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Chapter 2
Game Theory Notions

In this chapter, we define, discuss and illustrate game theoretic concepts
that shall be used in consequent chapters. The strategic games section (Sec-
tion 2.2) covers the basic concept of a strategic game, payoff functions and
symmetric games. The extensive games section (Section 2.3) briefly cov-
ers extensive games with both perfect and imperfect information, repeated

games, strategies in such games, and player recall.

2.1 Notes

This chapter is heavy on exposition; the main reason behind this is that
many of the definitions build upon each other, as can be seen in Figure 2.1.
Nonetheless, several ideas have been omitted for simplicity; for example, all
the games involved are pure strategy games (no mixed strategies), and do
not involve chance. There is further explanation as to why mixed strategies
do not feature, in Section 3.3.

Most of the material in this chapter features in [Osborne and Rubinstein,
1994], albeit edited and presented with the narrow focus on what is required

for later on.

15
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Strategic | Symmetric
Game Game
Extensive Infinitely T-Period
Game with Repeated Repeated
Strategy - »  Game with »  Game with
Lt Perfect Perfect
LT e T Information Information
: I
Extensive T-Period
Strategy - xGamev »  Repeated
Game
Games
with
Perfect
Recall

Figure 2.1: Game Definition Dependencies
2.2 Strategic Games

Before we launch into the theoretical definitions, we shall introduce probably

the most widely known game, the Prisoner’s Dilemma Game.

Definition 5 (Prisoner’s Dilemma). The Prisoner’s Dilemma (PD) is
a two-player game in which each player has only two pure strategies: co-
operation (C) and defection (D). In any given round, the two players re-
cetwe R points if both cooperate and only P points if both defect; a defector
who plays a cooperator gets T points, while the cooperator receives S (with

T>R>P>Sand2R>T+S).

A:<R S),B:(R T), 1)

T P S P

A:<3 0),32(3 5), 22)
5 1 0 1

Example 2.
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The 2-player game with payoff matrices (A,B) is an example of the Prisoner’s
Dilemma Game, as5>3>1>0and2x3>5+0.

The models we study assume that each decision-maker is "rational” in
the sense that he is aware of his alternatives, forms expectations about any
unknowns, has clear preferences, and chooses his action deliberately after
some process of optimisation. In the absence of uncertainty, the following

elements constitute a model of rational choice:

A set A of actions from which the decision-maker makes a choice

A set C of possible consequences of these actions

A consequence function g : A — C that associates a consequence with

each action

A preference relation (a complete transitive reflexive binary relation)
>~ on the set C.

Sometimes the decision-maker’s preferences are specified by giving a utility
function U : C' — R, which defines a preference relation 2~ by the condition
x 77y if and only if U(x) > U(y).

Given any set B C A of actions that are feasible in some particular case, a
rational decision-maker chooses a feasable action a* € B, which is optimal in
the sense that g(a*) 7 g(a) for all a € B; alternatively he solves the problem
maza.epU(g(a)).

A strategic game is a model of interactive decision-making in which each
decision-maker chooses his plan of action at once and for all, and these choices
are made simultaneously. The model consists of a finite set N of players and,
for each player i, a set A; of actions and a preference relation on the set of
action profiles (a profile is a collection of values of some variable, one for each
player). We refer to an action profile @ = (a;);en as an outcome, and denote

the set x;enA; of outcomes by A.



18 CHAPTER 2. GAME THEORY NOTIONS

Notation. For any profile x = (z;)jen and any i € N we let x_; be the list
(z;)jen\gy of elements of the profile x for all players except i.

The formal definition of a strategic game is the following.

Definition 6 (Strategic Game). A strategic game, or normal form

game consists of

1. a finite set N (the set of players)

2. a nonempty set A; (the set of actions available to player i) for each

player i € N

3. a preference relation 77; on A = X jenA; (the preference relation of

player i) for each player i € N
If the set A; of actions of every player i is finite then the game is finite.

Definition 7 (Payoff Function). Under a wide range of circumstances the
preference relation 7=; of player i in a strategic game can be represented by
a payoff function u; : A — R (also called a utility function), in the sense
that u;(a) > u;(b) whenever a 7Z; b. We refer to values of such a function
as payoffs (or utilities). Frequently we specify a player’s preference relation
by giving a payoff function that represents it. In such a case we denote the
game by (N, (A;), (w;)) rather than (N, (A;), (Z2:))-

~i

Before we illustrate the concept of strategic games with an example, we
would like to introduce a special class of strategic games - symmetric games.
Such games have the property that the participating decision-makers are
not affected by which player "role” (out of the player set V) they have been
assigned to (for instance, employer-employee games, or incumbent-challenger
games have roles); rather, each player has the same actions available to them,
with the same consequences for a symmetric choice of actions (rock-paper-

scissors is an example of a symmetric game).
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For the moment, we only define symmetry for the simplest type of strate-

gic games - 2-player games.

Definition 8 (Two-player Symmetric Game). Let G = ({1,2}, (A;), (7))
be a two-player strategic game; G is called symmetric if it satisfies the

following:
o Ay = Ay, and

o (ay,as) 71 (b1, b2) if and only if (asz,a1) 2

7o (b, b1) for all a € A and
be A.

For H = <{1,2}, (A;), (uz)>, the second criterion becomes wuy(ai,as) =

ug(ag, ay) for all a;,ay € A.

We can now formalise the Prisoner’s Dilemma (from Example 5) using

the definitions that we have introduced.

Example 3 (Prisoner’s Dilemma). Prisoner’s Dilemma is a strategic game

of the form ({1,2}, (4;), (7)), with:
o A=Ay, ={C,D}, and
e (D,C) Z1 (C,C) Z1 (D, D) Z1 (C, D)
e (C,D) Z2 (C,C) Z2 (D, D) Z2 (D, C)

It is trivial to see that it satisfies the symmetry property from Definition 8.

2.3 Extensive Games

2.3.1 Extensive Games with Perfect Information

An extensive game is a detailed description of the sequential structure of the

decision problems encountered by the players in a strategic situation. There is
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perfect information in such a game if each player, when making any decision,
is perfectly informed of all the events that have previously occurred. We
initially restrict attention to games in which no two players make decisions
at the same time and all relevant moves are made by players (no randomness

ever intervenes) - the first restriction is removed later on.

Definition 9 (Extensive Game with Perfect Information). An extensive

game with perfect information has the following components.
1. A set N (the set of players)

2. A set H of sequences (finite or infinite) that satisfies the following three

properties.

e The empty sequence () is a member of H.

o If (a*)=1..x € H (where K may be infinite) and L < K then
(a¥)p=1,..L € H.

e If an infinite sequence (a¥)$2, satisfies (a*)x=1. 1 € H for every

positive integer L then (a*)32, € H.

(Each member of H is a history; each component of a history is an
action taken by a player.) A history (a*)j=1 _x € H is terminal if
it is infinite or if there is no a®*' such that (a*)g=1. x+1 € H. The

set of terminal histories is denoted Z .

3. A function P that assigns to each nonterminal history (each member
of H\ Z) a member of N. (P is the player function, P(h) being the
player who takes an action after the history h.)

4. A preference relation =; on Z (the preference relation of player i)

~t

for each player i € N.
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We interpret such a game as follows. After any nonterminal history A

player P(h) chooses an action from the set
A(h)={a: (h,a) € H}

(here, if h is a history of length k, (h,a) denotes the history of length k + 1
consisting of h followed by a). The empty history is the starting point of the
game; it is referred to as the initial history. At this point player P()) chooses
a member of A(()). For each possible choice a® from this set player P(a®)
subsequently chooses a member of the set A(a®); this choice determines the
next player to move, and so on. A history after which no more choices have
to be made is terminal. Note that a history may be an infinite sequence of
actions.

Here is an example, illustrating the above definition.

2,0 0,0 1,1 1,1 0,2 0,0

Figure 2.2: Extensive Game with Perfect Information Example

Example 4 (Extensive Game with Perfect Information). Two people use the
following procedure to share two desirable identical indivisible objects. One
of them proposes an allocation, which the other then either accepts or rejects.
In the event of rejection, neither person receives either of the objects. Fach

person cares only about the number of objects he obtains.
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(N, H, P, (7)) is an extensive game that models the individuals’ predica-

ment; here
1. N ={1,2};

2. H consists of the ten histories: 0, (2,0), (1,1), (0,2), ((2,0),v), ((2,0),
n), ((1,1),y), (1,1),n), ((0,2),y), ((0,2),n);

3. P(0) =1 and P(h) =2 for ever nonterminal history h # ()

4 ((2,0),9) =1 ((1,1),9) =1 ((0,2),y

K¢
S
K¢
=
2
R

A convenient representation of this game is shown in Figure 2.2. The small
circle at the top of the diagram represents the initial history () (the starting
point of the game). The 1 above this circle indicates that P(0) =1 (player 1
makes the first move). The three line segments that emanate from the circle
correspond to the three members of A(D) (the possible actions of player 1 at
the initial history); the labels beside these line segments are the names of the
actions, (k,2 — k) being the proposal to give k of the objects to player 1 and
the remaining 2 — k to player 2. Fach line segment leads to a small disk
beside which is the label 2, indicating that player 2 takes an action after any
history of length one. The labels beside the line segments that emanate from
these disks are the names of player 2’s actions, y meaning “accept” and n
meaning “reject”. The numbers below the terminal histories are payoffs that
represent the players’ preferences (the first number in each pair is the payoff
of player 1 and the second is the payoff of player 2). Figure 2.2 suggests
an alternative definition of an extensive game in which the basic component
is a tree (a connected graph with no cycles). In this formulation each node
corresponds to a history and any pair of nodes that are connected corresponds

to an action; the names of the actions are not part of the definition.
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Player Strategy

A strategy of a player in an extensive game is a plan that specifies the action
chosen by the player for every history after which it is his turn to move, even

for histories that, if the strategy is followed, are never reached.

Definition 10 (Player Strategy in an Extensive Game with Perfect Infor-
mation). A strategy of player i € N in an extensive game with perfect
information (N, H, P, (2Z;)) is a function that assigns an action in A(h) to
each nonterminal history h € H \ Z for which P(h) = i.

Example 5 (Player Strategy in an Extensive Game with Perfect Informa-
tion). Consider the game from Ezample 4 (that is displayed in Figure 2.2).
Player 1 takes an action only after the initial history (), so that we can iden-
tify each of her strategies with one of three possible actions that she can take
after this history: (2,0), (1,1) and (0,2). Player 2 takes an action after
each of the three histories (2,0), (1,1) and (0,2), and in each case has two
possible actions. Thus we can identify each of his strategies as a triple asbyoco
where as, by and co are the actions that he chooses after the histories (2,0),
(1,1) and (0,2). The interpretation of player 2’s strateqy asbaocy is that it is
a contingency plan: if player 1 chooses (2,0) then player 2 will choose as; if
player 1 chooses (1,1) then player 2 will choose by; and if player 1 chooses
(0,2) then player 2 will choose cs.

Simultaneous Moves

To model situations in which players move simultaneously after certain his-
tories, each of them being fully informed of all past events when making his
choice, we can modify the definition an extensive game with perfect informa-

tion (Definition 9) as follows.
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Definition 11 (Extensive Game with Perfect Information and Simultaneous
Moves). An extensive game with perfect information and simulta-
neous moves is a tuple (N, H, P,(7Z;)) where N, H, =; for each i € N are
the same as in Definition 9, P is a function that assigns to each nontermi-
nal history a set of players, and H and P jointly satisfy the condition that
for every nonterminal history h there is a collection {A;(h)}icpn) of sets for

which A(h) = {a : (h,a) € H} = X;cpn)Ai(h).

A history in such a game is a sequence of vectors; the components of each
vector a¥ are the actions taken by the players whose turn it is to move after
the history (a')F=}. The set of actions among which each player i € P(h) can
choose after the history h is A;(h); the interpretation is that the choices of
the players in P(h) are made simultaneously. A strategy of player i € N in
such a game is a function that assigns an action in A;(h) to every nonterminal
history h for which i € P(h).

2.3.2 Repeated Games with Perfect Information

The model of a repeated game captures the situation in which players re-
peatedly engage in a strategic game (G, which we refer to as the constituent
game. We restrict attention to games in which the action set of each player
is compact and the preference relation of each player is continuous (a pref-
erence relation 22 on A is continuous if a 72 b whenever there are sequences
(a*), and (b*), in A that converge to a and b respectively for which a* = b*
for all k). On each occasion that G is played, the players choose their actions
simultaneously. When taking an action, a player knows the actions previ-
ously chosen by all players. We model this situation as an extensive game

with perfect information and simultaneous moves, as follows.

Definition 12 (Infinitely Repeated Game with Perfect Information). Let
G = (N,(A;), () be a strategic game; let A = X;enyA;. An infinitely
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repeated game with perfect information of G is an extensive game

with perfect information and simultaneous moves <N, H, P, (?\‘j)> i which

1. H={0}uU (U, AU A>® (where O is the initial history and A is the

set of infinite sequences (a')$2, of action profiles in G)
2. P(h) = N for each nonterminal history h € H

3. ¥ is a preference relation on A% that extends the preference relation 2Z;
in the sense that it satisfies the following condition of weak separability:
if (a') € A, a€ A, d € Aand az; d then

(a*,...,a  a,a™ ) o (a7 d a
for all values of t.

We now introduce the concept of a finitely repeated game. The formal
description of a finitely repeated game is very similar to that of an infinitely

repeated game.

Definition 13 (T-period Repeated Game with Perfect Information). For
any positive integer T a T'-period finitely repeated game with perfect
information of the strategic game (N, (A;), (7:)) is an extensive game with
perfect information that satisfies the conditions in Definition 12 when the
symbol oo is replaced by T'. We restrict attention to the case in which the
preference relation 72F of each player i in the finitely repeated game is rep-

resented by the function ZtT:o wi(a') /T, where u; is a payoff function that

represents i’s preference in the constituent game.

Definition 14 (Canonical Iterated Prisoner’s Dilemma). The canonical ver-
sion of the Iterated Prisoner’s Dilemma (IPD) is a T-period repeated game
with perfect information, with the Prisoner’s Dilemma (Definition 3) as its

constituent game.
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2.3.3 Extensive Games with Imperfect Information

In each of the models we have introduced previously, the players are not
perfectly informed, in some way, when making their choices. In a strategic
game a player, when taking an action, does not know the actions that the
other players take. In an extensive game with perfect information, a player
does not know the future moves planned by the other players. The model
that we define here - an extensive game with imperfect information - differs
in that the players may in addition be imperfectly informed about some (or
all) of the choices that have already been made.

The following definition generalises that of an extensive game with perfect
information (Definition 9) to allow players to be imperfectly informed about
past events when taking actions. It does not incorporate the generalisation
in which more than one player may move after any history (Definition 11),
nor does it allow for exogenous uncertainty: moves may not be made by
"chance”. The latter is not incorporated in our definition not as a result of
any incompatibilities in the concepts, but purely for simplicity’s sake; we will

not require it for the examples and analyses that come later.

Definition 15 (Extensive Game). An extensive game is a tuple (N, H,
P(IL,), (§1)> where N, H, 7=; for each i € N are the same as in Definition
9, and a partition I; of {h € H : P(h) = i} for each player i € N with the
property that A(h) = A(h') whenever h and h' are in the same member of
the partition. For I; € I, we denote by A(I;) the set A(h) and by P(I;) the
player P(h) for any h € I;. (I; is the information partition of player i;

a set I; € 1; is an information set of playeri.)

We interpret the histories in any given member of I; to be indistinguish-
able to player i. Thus the game models a situation in which after any history
h € I; € T; player i is informed that some history in I; has occured but is
not infomed that the history h has occured. The condition A(h) = A(R)
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whenever h and A’ are in the same member of I; captures the idea that if
A(h) # A(K) then player i could deduce, when he faced A(h), that the
history was not h’, contrary to our interpretation of I;.

If (N,H,P,(I)ien, (Zi)ien) is an extensive game (as in Definition 15)
and every member of the information partition of every player is a singleton,
then (N, H, P, (7;)icn) is an extensive game with perfect information (as in

Definition 9).

0,0 1,2 1,2 0,0

Figure 2.3: Extensive Game Example

Example 6 (Extensive Game). An example of an extensive game with im-
perfect information is shown in Figure 2.5. In this game player 1 makes the
first move, choosing between L and R. If she chooses R, the game ends. If
she chooses L, it is player 2’s turn to move; he is informed that player 2
chose L and chooses A or B. In either case it is player 1’s turn to move,
and when doing so she is not informed whether player 2 chose A or B, a fact
indicated in the figure by the dotted line connecting the ends of the histories

after which player 1 has to move for the second time, choosing an action from
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the set {l,r}. Formally, we have P(0) = P(L,A) = P(L,B) =1, P(L) =2,
I, = {0,{(L,A),(L,B)}}, and Iy = {{L}} (player 1 has two information
sets and player 2 has one). The numbers under the terminal histories are
players’ payoffs. (The first number in each pair is the payoff of player 1 and
the second is the payoff of player 2.)

In Definition 15, we do not allow more than one player to move after any
history. However, there is a sense in which an extensive game as we have
defined it can model such a situation. To see this, consider Example 6 above.
After player 1 chooses L, the situation in which players 1 and 2 are involved
is essentially the same as that captured by a game with perfect information
in which they choose actions simultaneously. (This is the reason that in much
of the literature the definition of an extensive game with perfect information
does not include the possibility of simultaneous moves.) With this in mind,
we can see that we need only trivial (if technically messy) adjustments, in
order to represent the games from Definitions 12 and 13 as extensive games
with imperfect information.

Before we introduce a specific type of repeated game with imperfect in-
formation (Definition 17), we extend the concept of symmetry that was first

introduced in the 2-player symmetric games definition (Definition 8).

Definition 16 (m-player Symmetric Strategic Game). An m-player strategic
game <N, (A;), (u1)> (where |N| = m) is symmetric if the following condi-
tions hold:

1. FEvery player has the same action space: A=A = Ay = ... = A,,.

2. Every player has a symmetric payoff function in the following sense:
pick two action profiles a,a’ € A and a pair of players i,7 € N arbi-
trarily. If a; = a}; and a—; can be obtained from a’_; by a permutation

of actions, then u;(a) = u;(a’).
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We illustrate the definition with an example.

Example 7 (m-player Symmetric Strategic Game). A 3-player Rock-Paper-
Scissors game ({1,2,3},{R, P, S}, (u;)) has the following rules:

e a starting pot of winnings is split between 3 players at the end of each

game

o if players pick one of each strategy, or everyone picks the same strateqy,

then the pot is shared equally
e if one player’s strateqy beats the others’ strategies, she wins the pot

o if two players’ strategies are the same and beat the third’s, then they

share the pot

This game is symmetric if the payoff profiles are as in Figure 2.4 (tuples
correspond to payoffs for players (I,I1LIII)).

=R R P S =P R P S
R[(222) (0,0,6) (33,0) R[(6,00) (30,3) (222)
I'P1(0,60) (0,33) (222 I1P|(330) 222 (0,0,6)
S1(30,3) (222) (6,0,0) S|(222) (06,0 (033)

|
=S R P S
R[(0,33) (222) (0,6,0)
P (222) (60,0 (3,0,3)
S (0,06) (33,0 (222

Figure 2.4: Rock-Paper-Scissors Payoffs

Definition 17 (m-Player Symmetric T-period Repeated Game). Let the con-
stituent game G = (N, (A;), (ZZi)) be an m-player symmetric strategic game;
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let A = X;enyA;. A T-period repeated game of G is an extensive game
(N, H, P, (I;),(z;)) in which

1. H={0} U (UL, A") (where O is the initial history and AT is the set of
T-length sequences (a')l_, of action profiles in G)

2. P(h) = N for each nonterminal history h € H

3. the preference relation 7} of each player i is represented by the func-

tion Y, ui(a’)/T, where u; is a payoff function that represents i’s

preference in the constituent game.
4. ]Il = ]Ij fO’l” all ’L,j eN

A player’s strategy in an extensive game with perfect information is a
function that specifies an action for every history after which the player
chooses an action (Definition 10). The following definition is an extension to

a general extensive game.

Definition 18 (Player Strategy in an Extensive Game). A strategy of
player i € N in an extensive game (N, H, P,(1;), (7Z;)) is a function that

~t

assigns an action in A(I;) to each information set I; € 1;.



Chapter 3

The Genetic Game Algorithm

In Chapter 1, we discussed the concept of the genetic algorithm in broad
terms. In this chapter, the goal is to find a meaningful way to apply the
genetic algorithm to problems in game theory. To that end, we shall take
various definitions that we introduced in Chapter 2 and combine them with
the ideas from Chapter 1; our results will be several formal definitions (cov-
ering the different flavours of games) that we will call the Genetic Game
Algorithm® (GGA).

After an discussion of the motivations behind the GGA and how it differs
from the GA (Section 3.1), we shall define two versions of the GGA - one for
symmetric strategic games (Section 3.2.1), and one for 2-player symmetric
repeated games (Section 3.2.2). Constraints and limitations of the given
algorithms are discussed in Section 3.3, and more general versions of the
GGA can be found in Appendix C.

To the author’s best knowledge, almost all of the material in this chapter

(at least in its present form), is original.

!This name should be interpreted as ”Genetic Algorithm for Games”, rather than an

” Algorithm for Genetic Games”.

31
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3.1 Overview

3.1.1 Motivations

The main motivation for the GGA stems from the desire to have an algorith-
mic method for finding the best strategy in a given action/strategy space,
just as the GA is an algorithmic method for finding the best individual in a
given population space. Another goal of the GGA is to formalise some of the
prior economic and game theoretic experimental work on strategy evolution.
For me personally, there were numerous times when the understanding of an
interesting experiment was hindered by the imprecise language used in its
exposition. By providing some precise but flexible definitions (built on the
very strict game theoretic definitions and results that has been developed
over the last 15 years), an attempt is made to alleviate these issues. Another
benefit of formalisation is that for any experiments that utilise the GGA, the
simulation implementation time is reduced (this is because a mathematically
stipulated model is the most precise specification that a software implementer
can hope for, meaning the written software can be written quicker and with
fewer bugs).

Beside strategy evolution, the GGA can be applied to other situations
involving discrete population, discrete-time dynamics, such as experiments

investigating population convergence or equilibrium points.

3.1.2 The GGA and the GA

In Chapter 1, we formalised only those parts of the GA that were domain
and problem independent, and even then, not all of them (for instance, we
introduced the concept of a terminating condition, which is but we did not
formally define it). As we are focusing on a specific domain of games - which

comes with its own formal language and structure - we can now precise in
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our definitions.

The GGA is different to the GA in that the evaluation process (from the
GA) is broken down into fitness, encoding and decoding in the GGA, which
are collectively called the evaluation functions; the GGA flowchart (Figure
3.1) reflects this decomposition. The most important one of all, the fitness
function, is (the only place in the GGA) where games are played. While
we can now specify the domains of the evaluation functions, they are in fact
problem-specific - we shall see several examples of these when we analyse

problems in the next two chapters.

3.2 Two GGA Definitions

Two versions of the GGA are presented in this chapter: Definition 19 (for
m-player symmetric strategic games) and Definition 20 (for a 2-player sym-
metric T-period repeated games). More general versions of the GGA can be
found in Appendix C - since they are not necessary for use in later chapters,
and are not different enough conceptually to warrant extra attention, we do

not present them here.

3.2.1 The GGA for Symmetric Strategic Games

Before we introduce the simplest version of the GGA, we need to define some

notation:

Notation. Wherever a function of the form T, : X — Y has been defined,

T, ;. will always be understood to be
T, : XE S YR (2,2, 2p) = (To(zy), Tol), ..., To(ag) (3.1)
forxy, ...,z € X.

Notation. R} refers to the set {x € Rlx > 0}



CHAPTER 3. THE GENETIC GAME ALGORITHM

Generate Initial
Chromosome
Population

y

Decode
chromosomes
to strategies

A
Evaluate fitness
of the initial pop'n,
set it as the
current pop'n

y

Encode strategies
to chromosomes

Evaluate fitness

Decode current o | of the current pop'n
population by playing the decoded

strategies in games

Is Terminating
Condition
Satisfied?

A
y
Select from the current
population to get Encode current
the intermediate ha population
population
y

Crossover intermediate
population to get
the new population

Mutate the new
population,
set it as the
current pop'n

Analyse
results

Figure 3.1: The GGA Flowchart
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Definition 19 (The Genetic Game Algorithm for an m-player Symmetric
Strategic Game). The GGA for an m-player symmetric game G = (N, (A;),

(ul)> consists of:

1. aset D C A(= A, = A,), the action subset, containing 2% elements
(for some k € N),

2. the evaluation functions:

e T.: D — B (an invertible encode function),
o Ty: B — D (the inverse of encode, the decode function),

o Ty : D" — (RJ)" (fitness)
where B = {0,1}* (k is as in point 1),
3. the genetic functions:
o (Ts’)?ﬁ : B" x (R)™ — B? (selection) - its inputs are the current

population and the population’s fitness,

o (TH)M2: B2 — B? (crossover) - its inpuls are two parent chromo-

somes,

e T, : B — B (mutation) - its input is the chromosome undergoing

mutation

4. the terminating condition function T, : B® x N — {true, false} - its

mput is a population and its generation number,

J. an n-tuple of actions, Y € D" (with n a multiple of 2), called the initial

population,
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Then the population sequence (X(p))pe{oJ’Q?m’c}, X(p) € B" is obtained
using the following:
S Te,n(?) forp=20

X(p) = (3.2)
(p1,p2,-sPn)  for1<p<c

where Vi =1, ..., 3,

(ai-1,p20) = T2 TUTUX (p = 1), Tr(Tun(X(p = 1)) (3:3)

In the above expressions, the terminating generation c € N is a number

that satisfies the following conditions:

—

0<j<ec=T(X(j),j) = false , and (3.4)

—

Tiy(X(c),c) = true. (3.5)

Remark 1. For a game G = <N,A, (uz)> and action subset D C A (G and
D as in Definition 19), the action subset induces a game G' = (N, D, (u;)).
This means that G', not G, is the game in which the GGA is searching for
the best action. Thus, it is imperative that D approximates A as closely as
possible, otherwise the optimum solution from D may not be a close enough

approzimation of the optimum solution from A.

The GGA from Definition 19 is used in the analysis of the Contract Game
problem from Chapter 5.

3.2.2 The GGA for Symmetric Repeated Games

The major difference between the GGA for extensive games and the GGA
for strategic games, in that the ”individuals” encoded in the chromosomes
are strategies, rather than actions.

As before, only one (narrow) extensive game GGA version is given here;
this is done so that we can maintain our focus and move forward to our

examples. Again, more general versions are provided in the Appendix.
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Definition 20 (The Genetic Game Algorithm for an m-player Symmet-
ric T-period Repeated Game). The GGA for an T-period repeated game
G = (N,H, P,(I;),(z:)) (see Definition 17) with an m-player symmetric
constituent game (N, (A;), (w;)), is defined in exactly the same way as in De-
finition 19, except that instead of instead of D, we have W, subset of player
strategies for the game G, (strategies are as defined in Definition 18), with
W containing 2% elements (for some k € N).

Remark 2. The argument here is similar to the one made in Remark 1: the
GGA is trying to find the "best” strategy from the strategy subset W, not from
the set of all strategies for the game; thus, for the GGA search to be useful,
we need to pick W so that the strategies within have enough complexity to be

useful in the problem being solved.

The GGA from Definition 20 is used in the analysis of the Axelrod ex-

periment from Chapter 4.

3.3 Constraints and Limitations

There are certain limitations regarding which games can be fitted to the

GGA:

1. The cardinality of the action/strategy subset must be power of 2.
If the cardinality is not a power of 2, then there will exist chromosomes
which do not correspond to any action/strategy - this would mean that

the mutation and crossover operators are not closed.

2. The number of individuals in each of the populations (in the population
sequence) must be a multiple of 2.
This restriction is in place only for the sake of notation simplicity in
the crossover operator, which tends to be symmetric. In practice, large

populations are usually used and this restriction becomes a non-issue.
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3. The GGA cannot model dynamics that feature non-integer populations,
such as replicator dynamics.
This incompatibility is not of crucial importantance, as continuous pop-
ulation dynamics have already been the focus of much in-depth re-
search, yielding results that eclipse anything presented here regarding

discrete population models ([Weibull, 1995] is a great resource on this

topic).



Chapter 4

Axelrod’s Evolutionary

Experiment

In 1979, Robert Axelrod (University of Michigan) hosted a tournament to see
what kinds of strategies would perform best over the long haul in the Iterated
Prisoner’s Dilemma (IPD) game. The fourteen entries (plus the "random”
strategy entered by Axelrod himself) - all computerized IPD strategies - were
submitted not just by game theorists, but also by economists, biologists, com-
puter scientists and psychologists. The tournament pitted the entries against
each other in a round-robin format (that is, each contestant is matched in
turn against every other contestant), with 200 rounds of PD played during
each "match”, and was run five times to smooth out random effects. Tit-For-
Tat (TFT), the winning strategy (that is, the one that averaged the highest
score overall), entered by Anatol Rapoport (a mathematical psychologist),

was the simplest of all submitted strategies, with just two rules:
1. in the first round, cooperate

2. in each subsequent round, play the opponent’s action from the previous

round

39
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Axelrod staged a secound tournament, and had sixty-two entry submis-
sions from 6 countries (plus the "random” strategy, as before). The rules
were only slightly modified from the first tournament: games were now of a
random length with median 200, rather than exactly 200 rounds; this avoided
the complications from programs having special cheating rules for the last
game. Surprisingly, given that every submitter had full information about
the structure and results of the first tournament, Tit-For-Tat once again

emerged as the winner.

After his tournaments, Axelrod went on to stage several ”evolutionary”
tournaments (or rather experiments, since these did not involve submitted
strategies). These experiments modelled the players in the IPD game as
stimulus-response automata - the stimulus was the state of the game, defined
as both players’ actions over the previous several moves, and the response was
the next period’s action (or actions) - and investigated the question of what
the best-performing IPD automaton strategy is. The focus of this chapter
will be on the specific experiment presented in [Axelrod, 1987] (and revisited
in [Marks, 1989]) - we shall describe the experimental setup as a GAA.

This is done with two aims in mind: to illustrate the GGA and at the
same time, to try to improve on one of the weaker aspects of Axelrod’s
unquestionably important and influential work - its mathematically loose
style of exposition. This perceived weakness should not be interpreted as
a challenge to the rigour or the correctness of the experiment itself. For
me personally, as I studied the aforementioned papers on this experiment,
the informal approach at times hindered my understanding of the material;
consequently, this chapter is designed to serve as a companion to Axelrod’s
and Marks’ research, by clarifying some of the murkier points and ” colouring

in” the sketches that they lay out.

We shall start with an overview in Section 4.1, which is roughly broken

down into the the following parts, mirroring Definition 20: the game, the
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strategy subset available to players, the evaluation functions, the genetic
functions, and the initial population. Then we proceed to formally describe
the experiment in detail in Sections 4.2, 4.3, 4.4, 4.5 and 4.6, using the defin-
itions from the previous chapters. In Section 4.7, we discuss the simulations
that we built to test our definitions, and the experiments that we ran on
them.

4.1 Overview

We are going to describe Axelrod’s experimental setup as a GGA, specifically

the version from Definition 20.

4.1.1 The Game

The game that the experiment revolves around is the Iterated Prisoner’s
Dilemma (which is a T-period repeated game with the Prisoner’s Dilemma as
the constituent game). What needs to be decided is whether we should model
the situation with the canonical, perfect information version (Definition 14),
or its imperfect information equivalent.

Unlike the tournament that we analyse in this chapter (which involves
stimulus-response automata), Axelrod’s first tournament pitted programmed
strategy subroutines against each other; although the extensive game being
played was not explicitly defined in Axelrod’s paper, one fact about his sub-
routines - that they were allowed to have persistent local variables - helped
determine what that definition should be.

In simple terms, persistent local variables allow the subroutines to "re-
member” between the rounds of the repeated game; hence, a strategy sub-
routine can choose to remember every move that it and its opponent made.

The implication stemming from this fact, is that the most appropriate game
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for our model is the repeated game with perfect information (that is, there

is an information set for each history in the game).

4.1.2 The Strategy Subset

The strategy subset, being explored in this experiment, contains all strategies

which have:

e an action for every possible combination of moves over the previous 3
rounds of the game; each player makes one of two moves - cooperate
or defect - at each of the 3 rounds, which brings it to 2¢ = 64 possible
combinations, and hence, 64 actions. The strategy’s current action is

determined solely by what happened in the previous 3 rounds.

e a "fake” history (or ”false memory” ), which is used by the strategy only
in the first 3 rounds, when there isn’t enough real history to determine

an action.

4.1.3 The Evaluation Functions

The binary representation of the strategy described above is quite straight-
forward; since the Prisoner’s Dilemma is a symmetric game with only two
possible actions, we can simply represent ”cooperate” as 0, and ”defect” as
1. Overall, each strategy is represented in the chromosome space by a 70 bit
chromosome. The first 6 bits store the fake history, and the remaining bits
store instructions regarding which action to take for each of the 64 possible

histories over the previous 3 rounds.

[1]2]3]4]5]6][7[s]9].[68]69]70]

vV Vo
phantom history behaviour rules
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Strategy | In Axelrod Name Author(s)

U1 K60R TFET with Check | J.Graaskamp & K.Katzen
for Random

Vg K91R Revised State J.Pinckley
Transition

U3 K40R Discoverer R.Adams

Uy K67R Tranquilizer C.Feathers

Us K76R Tester D.Gladstein

Vg K77R Adjuster S.Feld

vy K85R Slow-Never R.Falk & J.Langsted

Ug K47R Fink R.Hufford

Table 4.1: The Predetermined Strategies Used to Measure Fitness

Fitness

In his 1984 report, Axelrod specified a set (let us call it T8) of eight strategies
from his second tournament (that are listed in Table 4.1); the T8 strategies
could be used as representatives of the complete set of 63 strategies entered

in the tournament. Using the following equation:

8
f(w): Co+ chwk
i=1
= 11055+  (0.1574) ws + (0.1506) wy + (0.1185) ws
+ (0.0876) wat+ (0.0579) wg + (0.0492) wy
+ (0.0487) ws+ (0.0463) ws

where w; is the score strategy w gets playing 151 rounds of the IPD against
v;, Axelrod reported that the estimates correlated with the actual tourna-
ment scores at a variance of 0.98 (so 98% of the variance in his tournament

scores is explained by knowing a strategys performance against the T8). Con-
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sequently, Axelrod defines the evolutionary experiment’s population fitness

using the above equation (an example fitness calculation can be seen in Table
4.2).

Opponent | Outcome after 151 Rounds W CrpWy
Uy STRRPTS...R 420 63.252
Uy RRRRRRR...R 453 71.3022
Vs
S cwy 271.05
fw): co+ 325 crwy, | 381.60

Table 4.2: Sample Fitness Calculation for strategy w

(R, S, T, and P refer to the four possible outcomes of the Prisoner’s
Dilemma, as defined in Definition 5.)

This static! fitness measure was engineered with two assumptions in mind:

1. The 8 IPD strategies that it features provide an accurate approximation

of the 63 strategies entered into Axelrod’s second tournament

2. Those 63 strategies are representative of the entire population of IPD
strategies, and performance against these 63 strategies provides an ac-

curate approximation of performance against all IPD strategies.

If these assumptions did not hold, it could mean that the optimal strategy,
found using the static fitness, would be suboptimal with respect to the entire
set of all IPD strategies. In fact, [Nachbar, 1988] challenges the second
assumption, arguing that the results from Axelrod’s second tournament are
tainted by the entrants’ prior knowledge of the results of the first tournament,

which may have been suboptimal.

1See discussion in Section 1.2.
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Axelrod was aware of such doubts, because he introduces an alternative
fitness function, one that it no longer relies on these assumptions. During
fitness calculation for a strategy, the function pits that strategy against every
other in the population (including itself) in an IPD game, and averages the

outcome - it is a dynamic fitness function.

4.1.4 The Genetic Functions
Selection

The technique used here for selecting chromosomes (for crossover and muta-
tion) is called ”sigma scaling”. First, the mean and the standard deviation
(SD) of the fitness values is calculated before the selection; strategies with
fitness less than one SD lower than the mean are discarded (that is, they
play no part in forming the next generation), strategies with fitness over on
SD higher than the mean are selected twice, and the remaining strategies are

each selected only once.

Crossover

The standard one-point crossover technique (as in the CGA - see Definition 2)
is used: a gene position on the parent chromosomes is (uniformly) randomly
selected; then with the crossover probability p., the children are created from
both parent chromosomes being sliced at that point and their tail segments
switched, or with probability 1 — p. the children chromosomes are simply

clones of the parent chromosomes.

Mutation

The CGA mutation technique (see Definition 3) is used: each gene is per-

turbed in a probabilistic manner.
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4.1.5 The Initial Population

The initial population is drawn randomly, so each chromosome is generated

through 70 Bernoulli(3) trials.

4.1.6 The Terminating Condition

The terminating condition is a trigger condition that interrupts the GGA at

the 50" generation.

4.2 Detailed Analysis: The Game

As discussed in Section 4.1.1, the game being played is the Canonical IPD
from Definition 14 (which is a T-period repeated game with perfect informa-
tion, with the Prisoner’s Dilemma as the constituent game), with 7" = 151.

The payoffs in the PD constituent game are as in Example 2.
We give some important strategies for an IPD game G = <N ,H, P, (?\‘j)>
with constituent PD game (N, A, (;)):

Example 8 (AlIC Strategy for the IPD). The AlIC strategy always plays

"cooperate”:

AlC(h) =C Vhe H\ Z (4.1)

Example 9 (AlID Strategy for the IPD). The AllD strategy always plays
"defect”:
AllD(h) =D VYhe H\ Z (4.2)

Example 10 (Grim Strategy for the IPD). The Grim strategy, (which chooses
C, both initially and for as long as both players have chosen C'in every period
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in the past; otherwise, it chooses D) is defined as:

D if h=(ay,..,a,) # 0 and Ik € {1,...,n} s.t. ar # (C,C)
Grim(h) =
C  otherwise

(4.3)
forhe H\ Z and ay,...,a, € A.

Example 11 (TFT Strategy for the IPD). The Tit-For-Tat strategy, de-
scribed at the start of this chapter, is defined as:

C ifh=0

a_; ifh=(N,a)e H\ (ZU{0}) for some h' € Hae€ A
(4.4)

TFT(h) =

where 1 € N 1s the player playing the TF'T strategy.

4.3 The Strategy Subset & Evaluation Func-
tions: A First Look

Our first method of characterising the strategies involves representing them
as look-up tables - a response action is provided for each of the 64 possible

outcomes of the previous 3 rounds.

4.3.1 The Strategy Subset

The strategy subset W is the set of strategies of the form ((«,3,7), m).
(cr, B,7) is the false memory of the strategy, that gets used by the strategy
when the game has not been running long enough for 3 rounds’ worth of
history to have accumulated yet. «, (3, v are all action profiles and each
represents a round of the game that the strategy thinks has happened, with

« being the oldest memory (3 rounds ago) and + being the newest memory



48 CHAPTER 4. AXELROD’S EVOLUTIONARY EXPERIMENT

(last round). The function m : I — A maps each of 64 history equivalence
classes in the history partition I to an action - m is the look-up table part of
the strategy. The history partition I is defined through the following relation:
hy ~ hy if x(hy) = x(hy), where

((a,b,¢) ith=(I,a,b,c) for some I € H, abce A
(v,b,¢) if h = (b,c)

(8,7,¢) ifth=(c)

(,3,7) ifh=0

\

Let n : H — I be defined by h +— I if h € I. Then a strategy w € W is
defined by:

h — m(n(h)) (4.6)

4.3.2 Encode and Decode

The encode and decode functions map between an Axelrod strategy <(a,
B,7), m> and its binary representation (by, ..., byo), with b; € {0, 1}. We shall
try to formulate the decode function: T, : B — W, with (by, ..., bzg) — w.

We can break m down further into two functions: m = tos. s: 1 —
{1, ...,64} enumerates the history partitions, and is defined by Table B.1 (in
the table, if a for strategy w is designated DC', that implies that o, = D
and a_,, = C). t:{1,...,64} — A is defined by:

C if byys =0
ko wo (4.7)

D lf bk+6 - 1

To complete the definition of the decode function, we need to specify «,
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(G and . For strategy w:

C iftb =0

ay = (4.8)
D iftbh =1

Ay = (4.9)
C ifb3=0

fuw = (4.10)
D iftby=1

(4.11)

Ve = (4.12)
D ifbs=1

This kind of explicit definition - enumerating all the histories using a table
and linking that number to gene position - is fine in the 3 round memory
case; however, were we to increase the number of rounds that strategies look
into the past, the table would grow and such an approach would become
cumbersome. We need a more general way in which to define our decode and

encode functions, and we develop one below.

4.4 Machines And Agents

We first discuss special types of strategies: machines and agents. We then
adapt these concepts to specify strategies that are equivalent (that is, behave
in the same way under the same input) to those in Section 4.3.1, provided

that both map (encode and decode) to the same chromosome.

Definition 21 (Machine). For an infinitely (or T-period) repeated game of
G = (N,(A;), (), we define a machine of player i to be a four-tuple

~t

(Qi,qY, gi, 7)) in which
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1. Q; is a set of states
2. ¢° € Q; is the initial state

3. g+ Qi — A; is the output function, that assigns an action to each

state

4. T Qi Xx A — Q; is the transition function, that assigns a state to

every pair consisting of a state and an action profile

The set (); is unrestricted. In the first period, the state of the machine
is ¢ and the machine chooses the action g(¢¥). Whenever the machine is
in some state ¢;, it chooses the action g¢;(¢;) corresponding to that state.
The transition function 7; specifies how the machine moves from one state to
another: if the machine is in state ¢; and a is the action profile chosen then
its state changes to 7;(¢q;, a).

We shall now give some example machines for the canonical IPD game.

C.D

Figure 4.1: The AlIC Strategy Machine in the IPD

Example 12 (Machine). The simplest machine (Q;,qY, g;, 7;) that carries
out the AllC strategy (Example 8), is defined as follows:

2. ¢ =C"
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4. Ti:C/

This machine is illustrated in Figure 4.1.

CD

Figure 4.2: The AlID Strategy Machine in the IPD

Example 13 (Machine). The simplest machine (Q;,q0, g;,7;) that carries
out the AllD strategy (Example 9), is defined as follows:

1. Q; ={D'}
2. =D
3.9gi=D
4. =D

This machine is illustrated in Figure 4.2.

{(C,O)} All outcomes

Start
=
except (C,C)

All outcomes

Figure 4.3: The Grim Strategy Machine in the IPD

Example 14 (Machine). The simplest machine {(Q;, @0, gi, ;) that carries
out the grim strategy (Example 10), is defined as follows:
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1. Q;={C",D'}
2. ¢ =C"
3. ¢:(C")=C and f;(D')=D
4. =(C(C,C)) =C" and 7;(X, (Y, 2)) = D" if (X,(Y,2)) # (C',(C,C))

This machine is illustrated in Figure 4.35.

C D

- Q ) @

C

Figure 4.4: The Tit-For-Tat Strategy Machine in the IPD

Example 15 (Machine). The simplest machine (Q;,q>, gi, ;) that carries
out the Tit-For-Tat strateqy (Example 11), is defined as follows:

1. Q;={C",D'}
2. ¢ =C"
3. ¢:(C")=C and fi(D") =D

4. (X, (Y, 2)) = Z if Y is this machine’s last move and Z is the oppo-

nent’s last move
This machine is illustrated in Figure 4.4.

In Definition 21, the input of the transition function consists of the current
state and the profile of all the players’ current actions. It is more natural to

take as the input the current state and the list of actions chosen by the other
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players. This fits the natural description of a "strategy” as a plan of how
to behave in all possible circumstances that are consistent with one’s plans.
However, since the game theoretic definition (Definition 18) requires that a
strategy specify an action for all possible histories, including those that are
inconsistent with the player’s own strategy, we have to include as an input

into the transition function the action of the player himself.

We now introduce a type of machine that better captures the consistency

described above.

Definition 22 (Agent). For a two-player infinitely (or T-period) repeated
game of G = ({1,2}, (A;), (v;)), we define an agent of player i to be a four-
tuple (Q;, Y, gi, 75) in which Q;, ¢° € Q; and g; = Q; — A; are as in Definition
21, only here 7; (the transition function) is defined as 7; : Q; X A; — Q;
(where i # j ).

But how does an agent link in with the concept of strategy in a repeated

game?

Definition 23 (Agent as a Strategy). For an infinite (or T-period) repeated
game (N, H, P,(L;), (Z;)) and provided that at any round of the game, player
i € N can deduce the outcome of the previous round using its information set,
an agent {(Q;,q°, gi,7;) (representing player i) specifies the player’s strategy

w:I; = A; as:
I €L — gi(q) (4.13)
q € Q; here is the current state of the machine; q := ¢ at before the first

round, and q is updated to 7;,(q,a;) (i # j) after the strategy has made its

move, with a; being deduced from the information set I;.
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4.5 The Strategy Subset & Evaluation Func-
tions Using Agents

Since we are playing a game with perfect information, the outcome of the
previous round can be deduced from the history; thus, an agent as a strategy
(Definition 23) makes sense in this context, and we can apply the theory

from the previous subsection.

4.5.1 The Strategy Subset

Now, our strategy subset is the set of all agents (@, ", g, 7) that share the
specific @ and 7 outlined below; ¢° and ¢ - the parts of the agent that are
encoded in the chromosomes - are discussed in Section 4.5.2. These agents
determine player strategies in the way that was discussed at the end of the

previous section.

States

Each Axelrod agent has 64 states

Q = {q17qQ7”'aQG37Q64} (414)

Now, we introduce two functions that will help us relate the agent’s state

with actions in the game:

e own(k): action taken by this agent, k£ rounds ago.

e other(k): action taken by this agent’s opponent, k rounds ago.

We designate own’(k) and other’(k) to be the binary equivalents of own(k)
and other(k), that is:
0 if own(k)=C

own' (k) := (4.15)
1 if own(k)=D
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(and similarly for other’(k)).
So, if the agent is currently in state ¢;, (with [ being the state identifier,

or index) then the following equation holds:

3
| = (Z 43 *own' (k) 4 2 x 0ther'(k)]> +1 (4.16)
k=1
Once expanded, this equation becomes

I =2*xown/(1) +2° x other'(1)
+2% x own/(2)  +2° x other'(2)
+2% x own'(3)  +2' x other'(3) + 1

The Transition Function

After each "round” of the repeated game, each machine changes its state.
The new state (the post-transition state gy with index !’) relies only on the
machine’s pre-transition state ¢; and the opponent’s move a: gy := 7(q, a).
Given a machine’s pre-transition state ¢;, we can surmise which actions
the machine (and its opponent) took over the last 3 moves (i.e. the values of

the functions own(k) and other(k)), using Equation 4.16:

own'(3) := (I —1)mod 2 (4.17)
other'(3) := Mmod 2 (4.18)
own/(2) := ()28 oun (5) 2" other'(5) 6 (4.19)
(4.20)

other’(l) - (171)720-own/(3)721-other’(§)2722-own’(2)723-other’(2)f...mod2 (4.21)

We define new functions "*“own(k) and "*“other(k), which help us define
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the post-transition state gy (g is, as before, the agent’s output function):

"Yown' (k) = own/(k — 1) for k =2,3 (4.22)
"Yother'(k) :=  other'(k —1) for k =2,3 (4.23)
1 if =D
"Yown'(1) := 9(a) (4.24)
0 ifg(g)=C
1 ifa=D
"Wother'(1) := (4.25)
0 ifa=C

Finally, we can use the values of " own/(k) and "**other’(k) with Equa-

tion 4.16 to obtain an expression for the post-transition state index [’:

I' =24 x" own'(1) +2° X" other'(1)
+2% X" own’(2)  +2°% X" other’(2)
+20 xmew own’(3)  +2' X" other’(3) + 1

Combining the above with Equations 4.22, 4.23, 4.24 and 4.25, we obtain:

' =2" X Yg(qp=p} +2° X la=p}
+22 x own/(1)  +2* x other'(1)
+20 x own’(2)  +2' x other'(2) + 1

In summary, the transition function 7 is defined as (q;, a) — gy, where !’

is defined as above.

Example 16 (Transition Function). Say, a strategy is in state gs3, g(qs3) =
C and a = C. Using the above equations, we can evaluate own, other,

"Yown and "“other:
(own(1),other(1),own(2),...,other(3)) = (D,D,C,D,C,C)
("“own(1),"* other(1),"* own(2),...," " other(3)) = (C,C,D,D,D,C)
(" own/(1),"" other'(1),...,"" other'(3)) = (0,0,1,1,1,0)
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Consequently

I =2"%0+25x04+22 x 14+28 x 1420 x 142! x 041 = 4+8+1+1 = 14 (4.26)

and hence the new state index evaluates to 14 (that is, the post-transition

state is q14).

4.5.2 Encode And Decode

The decode function gives us the strategy from its binary representation. In
our case here, all that is left for us to do, in order to complete the specification
of the agent (and hence a strategy), is to provide the agent’s initial state and

its output function, given its chromosome (by, ..., bryo).

The Initial State

As we have discussed earlier, the first 6 genes of an agent’s chromosome
specify its false memory; this false memory allows us to define the "own”
and ”other” functions before the first round of the game. This, in turn,
allows us to apply Equation 4.16 to work out what the initial state is (here

m refers to the index of ¢°; that is, ¢° = g,,,):

m =24 x by +2° x by
—|—22 X b3 +23 X b4
+20 % by 428 xby+1
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The Output Function

We have already defined the machine states and the initial state for each

machine. The output function g : ) — A can be defined as:

C 1f b'+6 == O
9(qy) = ! (4.27)
D lf bj+6 - 1

for j € {1,...,64}.
While the strategy subset and the evaluation functions definitions yielded
with this approach are still specific to the 3-round memory scenario, it would

be trivial to adapt them to a scenario with a different memory depth.

4.6 Fitness, Genetic Functions & The Popu-

lation

4.6.1 Fitness
Definition 24 (Axelrod Static Fitness). We define the fitness function T} :
Wm — (RF)"™ as:

(w1, wa, .oy wn ) = (f (wr), f(w2), .., fwn)) (4.28)
where f: W — Ry is defined as

8
wi o+ Y ¢ Un(vr) (4.29)
=1

with cg = 110.55, ¢ = 0.1506, ¢y = 0.1574, ¢35 = 0.1185, ¢4 = 0.0876,
c5 = 0.0487, c¢g = 0.0579, c¢; = 0.0492 and cg = 0.0463.
Uy (s) is the outcome (for w) of a 151-round Iterated Prisoner’s Dilemma

game against strateqy s:
151

Uy(s) = Zul(ai, b’ (4.30)
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where a' = w(h;_1), b* = s(h;_1), u the payoff function for the PD, hy = ()
and h; = ({a', b}, {a?, %}, ..., {a", b'}).

Definition 25 (Axelrod Dynamic Fitness). We define the dynamic fitness
function Ty - W™ — (RT)"™ as:

(wy, wy, oy wn) = (f(wr), f(w2), ... f(wn)) (4.31)

where f: W — Ry is defined as
L i U, (1) (4.32)
W — (W .
o

Here, U,(s) is the average round outcome (for w) of a 151-round Iter-
ated Prisoner’s Dilemma game against strateqy s:

151

U, (s) = % ; i (a, bY) (4.33)

where a' = w(h;_1), b* = s(h;_1), u the payoff function for the PD, hy = ()
and h; = ({a', b}, {a?, %}, ..., {a’, b'}).

4.6.2 The Genetic Functions

Selection

T is the sigma scaling selection function: it eliminates all the strategies that
are 1 standard deviation below the average population fitness, and replaces

them with clones of the fittest strategies.

Definition 26 (Sigma Scaling Selection). We define the selection function
Ti: B" x (Rf)" — B? as:

((cj)j=1s (f5)j=1) = (d2i—1, da;), where (4.34)

di = ¢ - Ligiy>0} + Cn—p(a)) - Lg(i)<o} (4.35)
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k
p(k) = Z Lywsoy +1, 1 <k <N, (4.36)
=1
g(1) = mazx(0, Ji—p +1), (4.37)
p= %ka, o= (%Z(fk—u)?) (4.38)
k=1 k=1

In 4.35, we use a variable of the form c(y); (cu)i—; is a permutation of
the population tuple (cj)j_; in such a way, that c) < c@2) < ... < ¢ (this
is equivalent to the concept of order statistic in probability theory).

g (from 4.37) is the sigma scaling of the fitness function f.

An alternative (and much simpler) selection definition is a variant of the
roulette wheel selection (as in Definition 1); the only difference is that the
probability distribution of the ”wheel” is based on the the sigma scaled fitness

(and not the "pure” fitness):

PA((e0f: () = (06} = s s (430

Crossover

We define the 1-point crossover function 7, : B> — B? (= T for all i =

1,..,%) as:
((bl, -~-7bn>7 (Cl, ...,Cn)) = ((bh ...,by,Cy+1, ~-~7CN>7 (Cl, ...,Cy,by+1, 7bn))

for (by,...,b,), (c1,...,¢,) € B and Y is a discrete r.v., drawing members from

the set {1,2,...,n} with uniform probability %

P(Y =k)= %for ke{l,2,..,n} (4.40)

Mutation

The mutation function is simply the mutation function from Definition 3:
T, =CAT,,.
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4.6.3 The Initial Population

The initial population in this experiment was randomly generated, so we can

just give the initial chromosome population:
X(0) = ((Z, Zaj, -, Z?()j))?:l (4.41)

where Zy ~ Z: Bernoulli(5) Vk.

1
2

4.6.4 The Terminating Condition

Definition 27 (b-trigger Terminating Condition). A b-trigger terminating

bth

condition ends a GGA run at the generation:

. alse  ifk<b
i =400 Y (1.2
true ifk >0

The Axelrod terminating condition is a 50-trigger condition.

4.7 Veritying the Definitions

We would like to verify that the GGA functions defined in this chapter faith-
fully reflect Axelrod’s setup; we do this by implementing them in a simu-

lation, and comparing the simulation’s output to the results from [Axelrod,
1987] and [Marks, 1989].

4.7.1 Simulation Implementation

In order to verify the theory, the GGA and the problem-specific functions
described in earlier sections, were implemented in a Java simulation (the
details, including code snippets, can be found in Appendix A.1).

Several problems were encountered during the implementation.
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Firstly, the reliance of the fitness function upon 8 specific pre-programmed
strategies meant that it could not be replicated without the original source
code?. Further difficulties arose during integration of the strategy code
(which was written in FORTRAN 77) into the simulation code (that was
written in Java). Time constraints meant that the preferred solution - cre-
ating a bridge adapter using the JNI? - was not feasible. Auto-translation
of the FORTRAN code to Java was also ruled out, as none of the available
open-source tools proved adequate for the task. In the end, the strategies

were ported to pure Java by hand.

4.7.2 Results Comparison
Preliminary Test

As a preliminary test, the fitness function was applied to 3 strategies: AlIC
(Example 8), AlID (Example 9) and TFT (Example 11), just like Marks did

in his paper. The comparison can be seen in Table 4.3.

Strategy | Marks Result | GGA Result
AlID 319.831 319.4498
AlIC 398.513 347.6118
TFT 427.198 378.3799

Table 4.3: Fitness Calibration

The matching of the AlID fitness values and the matching of the order in
which the strategies ranked was encouraging; disappointingly, the AllC and
TFT fitness values did not match. It is likely that one or more mistakes were

introduced during the porting process.

2Luckily, Prof. Marks came to the rescue and was kind enough to send me the code

when I contacted him.
3Java Native Interface
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Simulation with Static Fitness

Axelrod’s simulations were run using a population size of twenty individuals
per generation. A run consisted of 50 generations. Forty runs were conducted
under identical conditions to allow an assessment of the variability of the
results.

Here is a quote from [Axelrod, 1987], describing the outcome:

Most of the strategies that evolved in the simulation actually re-
semble TIT FOR TAT, having many of the properties that make
TIT FOR TAT so successful. For example, five behavioral alleles
in the chromosomes evolved in the vast majority of the individ-
uals to give them behavioral patterns that were adaptive in this
environment and mirrored what TIT FOR TAT would do in sim-

ilar circumstances. These patterns are:

1. Do not rock the boat: continue to cooperate after three
mutual cooperations (which can be abbreviated as C after
RRR).

2. Be provocable: defect when the other player defects out of
the blue (D after receiving RRS).

3. Accept an apology: continue to cooperate after cooperation
has been restored (C after TSR).

4. Forget: cooperate when mutual cooperation has been re-
stored after an exploitation (C after SRR).

5. Accept a rut: defect after three mutual defections (D after

PPP).

While most of the runs evolve populations whose rules are very
similar to TIT FOR TAT, in eleven of the forty runs, the median
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rule actually does substantially better than TIT FOR TAT?. In
these eleven runs, the populations evolved strategies that manage
to exploit one of the eight representatives at the cost of achieving
somewhat less cooperation with two others. But the net effect is

a gain in effectiveness.

We would like to replicate Axelrod’s runs, and see whether we get the
same results as him. Before we can do that, we need to translate his technical
vocabulary into our language. For a rule given in the form A3AsA;, we can
calculate the genes to look for using the other/own lookup Table 4.4 - the

calculations can be seen in Figure 4.5 and are summarised in Table 4.5.

A; | own(i) | other(i)
R 0

T 0

S 0 1

P 1 1

Table 4.4: Converting Notations

A3 | A2 | A1 | Own3 | Other3 | Own2 | Other2 | Own1 | Other1 Gene
R|I R R 0 0 0 0 0 0 7
RIRI|S 0 0 0 0 0 1 39
T|S R 1 0 0 1 0 0 16
S| R|R 0 1 0 0 0 0 9
P PP 1 1 1 1 1 1 70

Figure 4.5: Calculating the Genes to Watch

In order for us to assess how similar our results are to Axelrod’s, we need

to answer the following questions:

47 Qubstantially” is later explained to be a 5% increase on Tit-for-Tat’s fitness.



4.7. VERIFYING THE DEFINITIONS 65

Axelrod Rule | Check for
C after RRR 0 at gene 7
D after RRS | 1 at gene 39
C after TSR | 0 at gene 16
C after SRR 0 at gene 9
D after PPP | 1 at gene 70

Table 4.5: Confirming Results

1. How does the fitness of the strategies extracted after each run compare

with TFT?

2. To what degree do the strategies extracted after each run exhibit ” TFT-

ness” (that is, how many of Axelrod’s 5 criteria from Table 4.5 do the

strategies satisfy)?

TFTness | Median Best Fitness Median Best

50gen | 18/40-5| 26/40-5 50 gen 14/40 better than TFT 38/40 better than TFT
19/40 -4 | 10/40 -4 0/40 5% better than TFT 6/40 5% better than TFT
2/40-3 | 4/40-3
1/40 - 2

100 gen | 4/10-5 | 6/10-5 100 gen 9/10 better than TFT 10/10 10 points higher than TFT
510-4 | 4/10-4 0/10 5% better than TFT 2/10 5% better than TFT
1/10-3

Figure 4.6: Simulation Results Using Static Fitness

40 runs of the simulation were made, each running for 50 generations. A
further 10 runs were made, each running for 100 generations. For each run,
both the best strategy of the final generation, and the median strategy of
the final generation were examined. The results are summarised in Figure
4.6 (in the TFTness table, the meaning of 7A/B - C” for a cell labelled 750
gen - Median” means that out of the B runs which ran for 50 generations, A

of the median values passed C TFTness tests).
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It can be seen than none of our median results were ”substantially” (5%)
better than TFT fitness; however our best strategy results seem to fit Axel-
rod’s findings more closely. And our TFTness results from the best strategies

confirm Axelrod’s assertions that the best strategies are those that exhibit
TFT-like properties.

Simulation with Dynamic Fitness

500

450 1 f% ﬁ\j

. »

i
400 )

350 4 , otee o

300 1 '

Mean Score

250 1 \

200 | o

- Lo | ol E

Generations
Figure 4.7: A Typical Run from Axelrod’s Dynamic Fitness Experiment

Axelrod also ran 10 simulation runs using the dynamic fitness; he de-

scribes his results in the following quote:

A typical run is shown in Figure 4.7. From a random start, the

population evolves away from whatever cooperation was initially
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displayed. The less cooperative rules do better than the more
cooperative rules because at first there are few other players who
are responsive - and when the other player is unresponsive the
most effective thing for an individual to do is simply defect. This
decreased cooperation in turn causes everyone to get lower scores
as mutual defection becomes more and more common. However,
after about ten or twenty generations the trend starts to reverse.
Some players evolve a pattern of reciprocating what cooperation
they find, and these reciprocating players tend to do well because
they can do very well with others who reciprocate without being
exploited for very long by those who just defect. The average
scores of the population then start to increase as cooperation
based upon reciprocity becomes better and better established.
So the evolving social environment led to a pattern of decreased
cooperation and decreased effectiveness, followed by a complete
reversal based upon an evolved ability to discriminate between
those who will reciprocate cooperation and those who won’t. As
the reciprocators do well, they spread in the population resulting
in more and more cooperation and greater and greater effective-

ness.

After simulation runs with the dynamic fitness, all of the runs exhibit the
initial dip in cooperation that Axelrod described. However, after 50 gener-
ations (Figure 4.8), only 2 of the 10 runs show the recovery in cooperation
that Axelrod talks about in his typical case®: most of the remaining runs
exhibit low levels of cooperation. For runs over 100 generations (Figure 4.9),
4 out of 10 exhibit high levels of cooperation: it seems that once cooperation

is established, it is more stable than non-cooperation.

5Axelrod’s paper does not make it explicitly clear, as to what ”typical” means statis-

tically.



68 CHAPTER 4. AXELROD’S EVOLUTIONARY EXPERIMENT

Average Fitness over 50 Generations
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Figure 4.8: Dynamic Fitness Results over 50 Generations
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Figure 4.9: Dynamic Fitness Results over 100 Generations
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The above experimental results exhibited enough similarities with Axel-
rod’s results to inspire confidence in the methods used; it is likely that the
discreptancies between our and Axelrod’s results are a consequence of the
fitness function not being identical and of slight variations in the genetic

parameters.
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Chapter 5

The Contract Game

This chapter will revolve around a mathematical economics paper entitled
”Social norms and economic incentives in firms” [Huck et al., 2003], that
studies the equilibria in a model (which we shall call the contract game)
that is similar to the public goods game from game theoric literature’. Our
goal will be to investigate the usefulness of the GGA as a problem analysis
tool, by comparing the analytic deductions derived within the paper to the
results obtained from applying the GGA to the contract game model.

Section 5.1 introduces the language and the components of the contract
game, and explains our motivations for studying it - the game’s formal defi-
nition is given in Section 5.2. Section 5.3 presents the analytic approach for
finding the game’s equlibria, Section 5.4 outlines how this can be done using
the GGA, and Section 5.5 analyses and compares the results from the two
approaches. Section 5.6 contains some remarks on the preceding sections,
and Section 5.7 is a brief conclusion.

The background section, and the underlying mathematics in the analytic

!The public goods game, a relative of the iterated prisoner’s dilemma, was designed
to illustrate such problems as voluntary payment of taxes and contribution to team and

community goals.

71
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approach section have been taken from [Huck et al., 2003] (although they

appear in heavily edited form).

5.1 Background

[Huck et al., 2003] studies the interplay between economic incentives and
social norms in firms. Its main focus is on efficiency norms, that is, norms
that arise from a firm’s workers’ desire for, or peer pressure towards, social
efficiency for the workers as a group.

In this context, a social norm (among the workers) is taken to be an
informal (unwritten) rule that is enforced either by the workers themselves
or is internalised by these, but is not enforced by a third party, such as
an employer. Once established in a group, a social norm is self-enforcing:
expecting the others to adhere to the norm, each worker wants to adhere as
well.

For a firm owner, social norms concerning work efforts are important
because they affect profits. Suppose, for example, that a workers compen-
sation not only depends on his or her own effort but also on the effort of
other workers. In the presence of such externalities, peer pressure, whether
explicit or internalised, might penalise those who deviate from what is good
for the group. And depending on the type of externality, which in its turn
depends on the economic incentives in the firm, equilibrium output may be
higher or lower than without the norm. On the one hand, if an increase in
one worker’s effort increases other workers’ (expected) income, as in team
production, a social norm may induce high efforts. On the other hand, if
an increase in one workers effort reduces others’ (expected) income, such
as under relative-performance pay schemes or under piece-rate schemes that
are adjusted according to past performance, social norms may instead keep

workers back from working hard.
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Group norms are analysed in a simple model of team incentives. Each
individual worker’s effort level is unobserved by the firm owner, but the total
output can be observed and verified without error. We study the following
basic scenario: first, the principal, who is the owner of the firm, chooses
a base wage paid to all workers and a bonus proportional to the team’s
output. Then, the agents, that is, the workers in the team, simultaneously
choose their individual work efforts. We study the effects of a social norm
concerning work effort among these team members.

A key observation is that social norms may cause multiplicity of equilibria
under a given contract. Intuitively, multiplicity arises when a social norm
introduces a coordination problem into the agents’ effort choices: others’ high

or low efforts may serve as a norm for the individual worker.

5.2 The Model

Consider a firm with n + 1 staff members: n > 1 identical employees (work-
ers) and one boss (principal) - referred to as 1, ...,n and p respectively. Each
worker ¢ receives the same wage w; the risk neutral, profit-maximising prin-
cipal pays the wages and is the residual claimant, receiving 7. Each worker
chooses to exert a certain effort x; > 0; the principal chooses a contract,
consisting of base wage a and a bonus rate b (both of which are assumed to
be nonnegative). The firm’s production technology is linear, with the output
y being the sum of all workers’ efforts; the wage received by each worker is
an affine function of the firm’s output, and is also dependent on the base
wage and the bonus rate.

The interaction between the staff is in two-stages: at first, the principal
chooses a contract (a,b), and then all the workers observe the contract and
simultaneously choose their individual efforts x;. After everyone has made

a decision, the total output y is revealed and the utilities are calculated
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- however, the levels of effort that each individual worker exerted remains
known only to that worker. The principal’s utility is a function of the number
of employees, the contract and the output; the workers’ utilities are additively
separable, linear-quadratic in income and efforts, and they may contain a
term v representing social preferences.

Let us summarise the situation described above:

Definition 28 (The Contract Game). The contract game <N, H, P, (ul)>
15 an extensive game with perfect information and simultaneous moves, as in
Definition 11, in which:

e N={1,2,...n,p}
e H=0U{(a,b)|a,b>0}U{((a,b),(x1,22,....2n))| 2; >0 for all i}

P if h=10

N\ {p} otherwise
for all non-terminal histories h

e P(h):=

e for player p,
up((a,b), (z:)i)) =m =y —nw=y—nla+by/n) (51

where y = Y1 x;; for players i =1, ....n,

i (a,8), (riy) = w — 50 — ol 4, b) (5.2)

where v : R® — R is a continuous function representing the social
z;j
J#i n—1

preference (to be specified later), and for player i, t_; = > is

the average of the other workers’ efforts.

Now that we have defined the game, we would like to solve it, by finding
the subgame perfect equilibria. Exactly what a subgame perfect equilibrium

is, or how we go about finding it, is addressed in the next section.



5.3. CALCULATING THE SUBGAME PERFECT EQUILIBRIUM 75

5.3 Calculating The Subgame Perfect Equi-
librium

To this point, we have been only concerned with games and their strategies,
without looking at the dynamics of their interactions. Any discussion of game
dynamics must start with the concept of Nash equilibrium, which we cite in
Definition 30; however, besides the definition, we present little explanation or

exposition, as ample coverage of this topic exists in game theoretic literature.

5.3.1 Subgame Perfect Equilibrium

Definition 29 (Outcome in an Extensive Game). For each strategy profile
s = (8;)ien in an extensive game (N, H, P, (7;)) we define the outcome
O(s) of s to be the terminal history that results when each player i € N
follows the precepts of s;. That is, O(s) is the (possibly infinite) history
(a*,...,a™*) € Z such that for 0 < k < K we have sp(q1,_qr(a', ..., a") = a**1.

The first solution concept we define for an extensive game ignores the
sequential structure of the game; it treats the strategies as choices that are

made once and for all before play begins.

Definition 30 (Nash Equilibrium of an Extensive Game with Perfect Infor-
mation). A Nash equilibrium of an extensive game with perfect information
(N, H, P, (7)) is a strategy profile s* such that for every player i € N we
have

O(s*;,87) i O(s™;, s4) (5.3)

—17 2% —17

for every strategy s; of player i.

Example 17 (Nash Equilibrium of an Extensive Game with Perfect Infor-

mation). We revisit Ezample 4 (illustrated in Figure 2.2); the Nash equi-
libria of that game are ((2,0),yyy), ((2,0),yyn), ((2,0),yny), ((2,0),ynn),
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((1,1),nyy), ((1,1),nyn), ((0,2),nny), ((2,0),nny), ((2,0),nnn). The first
four results are in the division (2,0), the next two results are in the division
(1,1), the next result is in the division (0,2) and the last two results are in
the division (0,0). All of the equilibria except ((2,0),yyy) and ((1,1), nyy)
involve an action of player 2 that is implausible after some history (since he

rejects a proposal that gives him at least one of the objects).

Definition 31 (A Subgame of an Extensive Game with Perfect Informa-
tion). The subgame of the extensive game with perfect information I' =
(N, H,P, (7)) that follows the history h is the extensive game I'(h) = (N,
Hlp, Pln, (Zi |n)), where H|j, is the set of sequences h' of actions for which
(h,h') € H, P|y, is defined by P|,(h') = P(h,h') for each h' € H|p,, and =; |
is defined by h' 77; |n b7 if and only if (h,h') 7=; (h,h”).

The notion of equilibrium we now define requires the action prescribed
by each player’s strategy to be optimal, given the other players’ strategies,
after every history. Given a strategy s; of player ¢ and a history h in the
extensive game I', denote by s;|, the strategy that s; induces in the subgame
I'(h) (i.e. si|n(R') = si(h, ') for each h' € H|,); denote by Oy the outcome
function T'(h).

Definition 32 (Subgame Perfect Equilibrium for an Extensive Game with
Perfect Information). The subgame perfect equilibrium of an extensive game
with perfect information I' = <N, H, P, (i‘ﬂ)> is a strategy profile s* such for
every player i € N and every nonterminal history h € H \ Z for which
P(h) =i we have

On(s%4ln, s7ln) Zi [nO(sZin, 1) (5.4)

for every strategy s; of player i in the subgame T'(h).

Equivalently, we can define a subgame perfect equilibrium to be a strategy
profile s* in I" for which for any history A the strategic profile s*|, is a Nash
equilibrium of the subgame I'(h).
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The notion of subgame perfect equilibrium eliminates Nash equilibria
in which the players’ threats are not credible. For example, in the game

from Example 4 the only subgame perfect equilibria are ((2,0),yyy) and
((1,1),nyy).

5.3.2 Back to the Problem

As we have already mentioned, we are looking for the Contract Game’s sub-
game perfect equilibrium strategy profile. More precisely, we will focus on
symmetric equilibria, that is, equilibria in which all workers use the same

strategy = and, thus, exert the same effort under any given contract (a,b).

Lemma 1. In every symmetric equilibrium of the Contract Game, the prin-

cipal chooses the base wage to be zero (a =0).

Proof. A uniform effort profile (z, z, ..., ) constitutes a symmetric Nash equi-
librium in the corresponding subgame if and only if the common effort x is

a worker’s best reply when the others exert effort x:

x€&(r) = argmaxo(t, ) (5.5)

b, 1
= arg marysg {a + —t— 5252 —o(t, z, b)} (5.6)
= n

From the above, it is clear that the workers’ utility maximisation does not
depend on the base wage a. Hence, since such a salary is costly to the

principal, he will minimise it to a = 0 in every subgame perfect equilibrium.

]

No Social Preferences

We first consider the simplest version of the Contract Game: the case when
the workers’ preferences are not social, that is, when the social preference is

everywhere zero.
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Lemma 2. When the social preference v = 0, the unique subgame per-
fect equilibrium strategy profile is (Sp, Sw, Sw, - Sw), where s, == (0,1) and

su{(@)}) = &

Proof. We determine the subgame perfect equilibrium strategy using back-
wards induction, so we consider the workers’ utility first; with v = 0, Equa-

tion 5.2 becomes:

1
Thus, each worker solves
b 1
MAT ;>0 {ﬁx’ - 51‘3} (5.8)

Consequently, the unique Nash equilibrium effort level, given any contract
(a,b),is z; = % for all workers i. We solve for subgame perfect equilibrium by
inserting the equilibrium effort into the expression for the principal’s utility,
to obtain

u, = (1 —0)b—na (5.9)

By Lemma 1 (and since u, is a decreasing function of the base wage), the
principal will set @ = 0, and maximise his utility by setting b = % Substi-

tuting this back into the workers’ effort x;, we get x; = O]

1
2n”

In sum: in the absence of a social norm, there exists a unique subgame
perfect equilibrium. In this equilibrium, the principal offers zero base salary,

and offers 50/50 split of the firms’ revenue with the team of workers.

The Team Optimum

We have assumed, up to now, that the workers do not cooperate, and only
optimise their own utility. However, were the workers interested in the overall
good of the team, (that is, trying to maximise the sum of the worker utilities,
not the individual utilities), they would be exert a different effort level to the

individual optimum.
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Definition 33 (Team Optimum Effort). Let x be the symmetric effort exerted

by every worker, in order to maximise the sum of the worker utilities:

Max,>o {Z uz} (5.10)

We will call this effort level the team optimum effort for the workers as

a collective under contract (a,b), and denote it by o(a,b).

Lemma 3. In the case when the workers’ preferences are not social, for any

given contract (a,b), the team optimum effort x is equal to b.

Proof. Equation 5.7 gives us the worker utility in the case where v = 0, and

so in order to calculate the team optimum, we need to solve

1
maxz>o {; uz} = MaZz>0 {f(.%’)} = MaZz>o {n (a + br — 51’2) }
(5.11)
Clearly, we require 0 = f’(z), which is satisfied at z = b. [

The Efficiency Preference

We assume here that each worker i has social preferences with the following
qualitative feature: if others cause higher externalities, or worker ¢ expects
them to do so, then also 7 wants to work more. This is the idea of peer
pressure. Such peer pressure can be internalised or external: arising in the
mind of the defector (say, by way of reduced self-esteem), and /or arising from
other team members’ irritation or anger from losing due to i’s shirking. Here
we study an internalised social norm, as the defectors are not punished in
our model.

Through our choice of efficiency preference, we would like to capture
two phenomena: workers derive disutility when deviating from the team

optimum, and this disutility is increased or reduced based on whether the
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others in the team work more or less, respectively - that is, if a worker is
slacking off along with everyone else, the disutility is much less than when
the slacker is surrounded by hard workers. We formalise such preferences in

the following remark.

Remark 3. We assume that the social disutility term v(x;,Z_;,b) is convex
in the worker’s own effort, with the minimum at z; = b (the team optimum

effort level), and non-decreasing in _;, the other workers’ average effort.

Proposition 1. Suppose that v : Rt — R is continuous, and that v(t,x,b),
for any b,z > 0, 1s convex in t with the minimum att = 0. Then there exists
at least one symmetric Nash equilibrium effort x for each b > 0, and that all

such x lie in the interval [2,b)

Proof. In the model where workers had no social preferences, we proved the
existence of a subgame perfect equilibrium by construction. For this current
model, we can guarantee the existence by the following lemma (taken from
[Huck et al., 2003]) - the lemma also proves that all the solutions lie in the
closed interval [2,b]. Corollary 1 finishes the proof by showing that = = b

cannot be a solution. O

Lemma 4. Suppose that v is as in Proposition 1. Then there exists at least
one symmetric Nash equilibrium effort x for each b > 0, and that all such x

lie in the interval [2,0].

Proof. Suppose b > 0. A common effort level x is a Nash equilibrium associ-
ated with contract (a, b) if and only if it satisfies 5.6. First note that, for each
x > 0, the set £(x) is a nonempty, convex and compact subset of the interval
[2,b]. No ¢ outside this interval belongs to the set &(z), since the maximand
is strictly increasing in ¢ to the left of this interval, and it is strictly decreasing

to the right of the interval. Hence, £(x) is a nonempty and compact subset
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of [%, b], by Weierstrass’ Maximum Theorem applied to the continuous maxi-
mand. Moreover, if v is convex, then the maximand is concave, and thus &(x)
is convex. Second, the so-defined solution correspondence &, which maps oth-
ers” mean effort x to own optimal efforts ¢t € £(x), is upper hemi-continuous
by Berge’s Maximum Theorem. Being a compact- and convex-valued upper
hemi-continuous correspondence from R to [2,5] C R., € has at least one
fixed point z in [2, 0], by Kakutani’s Fixed-Point Theorem. O

So, given a v with the properties outlined in Remark 3, we know that all
b

the equilibrium efforts z lie in [, b].
Corollary 1. Given a v with the properties outlined in the above Lemma,
and the additional property that it is continuously differentiable in its first

argument, x # b.

Proof. 1f v is continuously differentiable in its first argument, then we can
combine Equation 5.6, with the fact that all the equilibrium efforts x are

internal, (that is, > 0), to surmise that

0=11(t,2)|i=z (5.12)
Then:
b
0= E—vi(x,z,b)—:z: (5.13)
b,
T= = vy (z,x,b) (5.14)

We have already required v to have a minimum at ¢ = b for any b, z > 0;
thus,
vy (t, 2, b)|i=p = 0 for all z > 0 (5.15)

It is clear that after substituting 5.15 into 5.14, x = b cannot satisfy the

resulting equation. O



82 CHAPTER 5. THE CONTRACT GAME

Peer Pressure

If v is proportional to the square of the worker’s deviation from the socially

optimal effort, then it satisfies all of the requirements (set out in Remark 3):

v(xs, T_4,b) = %(o(a, b) — x:)*p(o(a,b) — i) (5.16)

where, in the simple case considered here, o(a,b) = b, and where p : R, — R

is continuously differentiable with p’ < 0. Hence,
1

We will refer to the proportionality factor p(b — Z_;) as peer pressure. The
more others deviate from the social optimum, the less peer pressure does a
deviating worker feel.

In this special case, the necessary and sufficient first order condition 5.14
(for = being an equilibrium effort) becomes x = F'(x), where

_ I+nplb—m) b

F@) == (5.18)

The function F' : Ry — R, is clearly continuous and non-decreasing, with
F(0) > £ and F(b) < b. Hence, we can immediately verify that there indeed
exists at least one fixed-point under F', and that all fixed points belong to
the interval [%, b), where every fixed point is the effort level in a symmetric
Nash equilibrium and vice versa.

We illustrate the above exposition by way of a numerical example.

Example 18 (Peer Pressure). Suppose that the peer-pressure function p is
given by
aexp(—B(b—x)?) ifx<b
p(b—x) = (=A( ") (5.19)
Q ifx >0
for a, 8 > 0. Here, a represents the utility weight placed on norm adherence

and (3 the sensitivity of this weight to others’ norm adherence.
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After substituting the above p function into Equation 5.18, we can find the
equilibrium solutions numerically®. Figure 5.1 is a graph of the equilibrium
(b,x) pairs for the number of workers k = 8, a = 4, and [ = 40. Note that
for some bonus rates (b = 0.4, say), there are in fact up to 3 worker effort

equilibrium levels.

Equilibria for a=4, =40, n=8
05 T T T T T T T

0.45F / .

0.35F / b

< 0.25

0.15f / .

0.1 /

0.05F —— b

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 5.1: Nash equilibrium efforts x for different bonus rates b

2The Matlab code needed for the calculations and the plotting, was written myself and

can be found in Appendix A.2
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5.4 Applying the GGA

As we have already mentioned at the start of this chapter, our goal is to
investigate the effectiveness of the GGA as a problem analysis tool. To that
end, we shall apply the GGA to the contract game model and compare the
results with the analytic results obtained in the previous section.

We will be attempting to find the symmetric subgame perfect equilibrium
strategy profile (sp, Sw, Sw, ---, Sw); however, we shall take Lemma 1 as given,
meaning that our problem can be reduced to finding the equilibrium action
profile ((0,0), x, z, ..., z) - that is, finding the equilibrium action x in response
to a given contract (0,b) (a = 0 by the lemma). Consequently, we shall run
the algorithm several times over, varying the b value each time.

It is worth noting that since it is impossible to search the entire infinite
set of possible worker effort strategies (for reasons discussed in Section 3.3),
we have to work with the discrete version of the contract game from here
onwards - that is, the worker strategies can take values only from a finite
subset of the entire solution space (we shall specify this subset in the next

subsection).

5.4.1 The GGA Specification

The game used for fitness calculations is not actually the contract game

(Definition 28), but a reduced subgame of it:

Definition 34 (The Reduced Contract Subgame). The reduced contract

subgame <N\{p}, A, (vl)> is a strategic n-player symmetric game in which:
e A=RR],
o v;i(x1,x9,....,xn) = u;((0,0), (z;)ly fori=1,..,n,

o N, (u;)!_, are as in Definition 28, and
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e b is a pre-defined constant.

Because the subgame is a symmetric strategic game, we shall be using
the symmetric strategic game GGA (Definition 19).

The chromosomes in the population represent the worker actions in re-
sponse to a contract (0,b). We recycle the genetic functions (selection, mu-
tation, crossover) from the Axelrod experiment, except that we use slightly
different parameters (a mutation probability of 0.02, and a crossover proba-
bility of 0.6). The terminating condition is a trigger condition (see Definition
27) that interrupts the GGA at the 200" generation. The details of the re-

maining parts of the GGA are discussed below.

5.4.2 The Strategy Subset and Encoding/Decoding

The worker effort information is encoded in the chromosomes using Gray

encoding:

Definition 35 (Gray Decoding). Assume that a real value v is represented
by a chromosome, with associated step size t and minimum value m; in order

to recover v, the following steps need to be followed:

1. The chromosome b is decoded to an integeri by treating the chromosome

as the integer’s base-2 representation
2. i is multiplied by the step size t to get value j (j = s X 1)
3. v is equal to the offset of j by the minimum value m (v = j+m)
Example 19 (Gray Decoding). If b = 0101, t = 0.01 and m = —0.2, then:
1. i=1x2041x22=5

2. 7 =5x0.01 =0.05
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3. v=73+m=0.03

so the decoded value is 0.03.
We now give a definition of the encode and decode functions:
e Encode T, : D — B with v — (by, ..., ;) is determined by a recursive

definition:

by =2 - ™ nod 2171 (5.20)

by = (” - T p, 2’—1) mod 2! (5.21)

k—1
v—m _ _
by = ( . —ij-zl J> mod 2" (5.22)
7j=1
e Decode T; : B — D with (by,...,b) — v is defined by v = ¢ -
22:0 2k bk+1 + m.

In the above, [ is the length of the chromosome, ¢ is the step size, and m is
the minimum value.

In our case, the chromosome length [ = 12, the step size t = 0.000625
and the minimum value m = 0, meaning that the subset of worker efforts
being explored by the GGA is:

D = {x € X | x is a multiple of 0.000625} (5.23)

where X = [0,0.000625 x 2'2) = [0, 2.56).
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5.4.3 The Population

The initial population is generated using the same random Bernoulli tech-
nique as in the Axelrod experiment. With regards to the size of the initial
(and all subsequent) populations, we apply a restriction: the size of the pop-
ulation is equal to the number of workers in the game being played - this
restriction simplifies the definition of the fitness function (this will become

apparent when the fitness functions are introduced).

5.4.4 Fitness

Fitness Version 1

The fitness function should encourage optimality in the worker strategies
- workers that get the best utility out of their current situation should be
rated highly. Keeping this in mind, the first version of the fitness function
is very simple: the fitness of a worker is his relative utility from one round
of the contract game, played against the principal contract (0,b) and the
other strategies in the current population® (relative utility means that the
minimum utility across all of the workers in the population is subtracted
from each player’s utility - consequently, there is always a strategy that has
a fitness of 0, and all fitness values are non-negative).

Here is the definition of the first fitness function: Ty : D™ — (R{)™ with
S = (81,1, 8n) = (f1(8), ..o, fu(s)), where

fi(8) = wi(s) — umin(s) (5.24)

and

Unnin(8) = MiNke(1,..n} Un(S) (5.25)

(ug is as defined in Equation 5.2).

3This is where the restriction mentioned in Section 5.4.3 comes in.
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5.5 Results Analysis

b (which determines the principal’s action (0, b)) is the simulation’s sole

input parameter

e the output of the simulation is the population sequence (which contains
all of the populations, from the initial population through to the final

generation® ) and their fitness values

e we focus only on the fittest worker strategy = from the final genera-
tion; we consider the point (b, z) to be the result from this run of the

simulation

e for each b, 3 runs are made; we plot a graph using the average of the 3

x values

e the b input values were from the interval [0, 0.8], starting at 0.01, step
size 0.01

5.5.1 Results Analysis Under Fitness Version 1

We first ran the GGA against the simpler version of the contract game: the
version with no social preferences (v = 0). We expected the GGA to tell us
that x = % is the subgame perfect strategy for each b.

Under the fitness function T}, a higher utility of a strategy should lead
to a higher relative utility, so in theory one would expect all but the best-
response efforts to eventually become extinct. In practice, however, this
was not the case: for all values of b, the fittest worker effort from the final
generation was equal or close to 0, instead of the expected value x = % (and
these fittest strategies were representative of the populations they were from

- in every case, the populations had converged to 0). How can we explain

4The final generation is the last generation before the terminating condition is triggered.
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such marked discrepancies between the theoretical expectations and practical
results?
Let us first consider the case where every worker exerts the same effort,

xr = %; then the total output y = b and by Equation 5.2, the utility for each

worker is:
Uy = W— %2 (5.26)
- bz (5.27)
= zb;; i (5.29)

Now, say worker 1 chooses to exert x; = 0 instead, while all the other

workers continue to exert = 2; then the total output becomes y = @,
and the utility for worker 1 is:
Uy = W (5.30)
b
= bgj (5.31)
n—1
= (2 - 2) - (5.32)
_ 2 2;2217 - 262n—2b . (5.33)

So worker 1 earns a lower utility by playing z = 0 instead of x = %

However, if we take into consideration the utilities for the other workers:

Uy = W— — (5.34)
Vn—-1) ¥ b (n-1)
= - < =y, 5.35
n 2n? n Hs (5.35)
we suddenly see that after playing x = 0, worker 1 has the best fitness of all,

as opposed to having the same fitness as everyone else after playing x = %
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Thus, under T}, player 1 is able to exert a suboptimal (for himself) effort,
but due to free-riding, come out on top evolutionarily. We need to rethink

our choice of fitness function.

5.5.2 Fitness Version 2

With 2T, the second version of the fitness function, we attempt to remove the
relativity aspect that doomed the first version to failure. Since we are trying
to encourage convergence to the best response, the new fitness definition will
reflect how good the strategy’s chosen action is, compared to the best move
it could have made in the same situation (that is, under the assumption that
the opponents take the same actions). Under *T}, a strategy’s fitness is the
ratio of the payoff from the action it actually made, to the payoff from the
best move that it could have made (and like for T, the fitness values are
shifted so that they are non-negative).

The definition of the second fitness function is: 2T} : D" — (RJ)" with
s = (81, 8n) = (h1(8), ..., hn($)), where

hl(s) - gl<S) - mince{l,..,n} gc(s) (536)
fz(Sz, Sfl)

arg maziep fi(t,s_;)

(D is as in Equation 5.23), and, as before

gi(s1,8-1) = (5.37)

"Ty(a) = (fi(8), s fa($)) (5.38)

5.5.3 Results Analysis Under Fitness Version 2

From the plot of the averaged results (Figure 5.2), distinct intervals of con-
tinuity and discontinuity can be seen. Since we expect multiple equilibria
at certain intervals, averaging the results may not give us a clear picture

of what is going on in the simulation. We try a new approach: we process
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Averaged equilibria using 2nd Fitness for a=4, =40, n=8
05 T T T T T T T

0.45

0.4

0.35

0.3

< 0.25

0.2

0.15

0.1

0.05

Figure 5.2: Averaged equilibria using 2T}
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the results, grouping seemingly continuous subsequences together, averaging
them and separating anomalous results out. A plot of the processed results
(Figure 5.3) reveals more about the behaviour of the simulation.

Equilibria using 2nd Fitness for a=4, =40, n=8
07 T T T T T T T

X X XX X X
0.6 b

Figure 5.3: Equilibria using 27}

We can now see just what was causing the spikes on the interval b =
[0.6,0.8] in Figure 5.2: there were 6 outliers (anomalous points), all at around
x = 0.64. Their consistent reappearance upon reruns of the simulation meant
that they cannot be discounted in the analysis, and need some investigation.

So, the root cause of the outliers is hidden somewhere within the functions
and parameters used in the GGA. Upon close examination, one factor is an
obvious candidate: the small population size. As a result of the restriction

from Section 5.4.3, the population size is tied to the number of workers in
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the underlying contract game. So, if we wanted to analyse the game with
(the number of workers) k = 8, we would be forced to use a population size
of 8. It is a known genetic algorithms problem that a population of such size
can lead to premature convergence®. And indeed, some exploratory simula-
tion modifications seemed to suggest that this was the case: increasing the
number of workers in the game (and with it, the population size) decreased
the number of outliers. A new version of the fitness function, one that would

somehow divorce population size from the worker number, is required.

5.5.4 Fitness Version 3

3T extends *T; by loosening the restriction from Section 5.4.3 - when using
3T}, the number of strategies in the population is now allowed to exceed
(as well as equal) the number of players in the contract game. In its fitness
evaluation of a strategy, 2T} uses all of the strategies in the population (one
for each worker in the contract game), because the population size is equal to
the worker number. With T, this is not possible, as there could potentially
be more strategies than worker places; hence 3T uses only a subset of the
population - this subset always contains the strategy being evaluated, the
other strategies in the subset are picked randomly from the main population,
and its size is exactly the number of workers in the game.

The definition of the third fitness function is: *Ty : D" — (R{)™ with
s =(S1,..;8n) — (h11(5), ..., hj1, ..., hn(s)), where

(hl,la cees hl,n) =2 Tf(O'k(’ﬂ'l<S))) (539)

5Premature convergence refers to the following situation: if an individual that is fitter
than most of its competitors emerges early on in the course of the GA run, it may repro-
duce so abundantly that it drives down the population’s diversity too soon, leading the
algorithm to converge on the local optimum that that individual represents rather than

searching the fitness landscape thoroughly enough to find the global optimum.
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foralll=1,2,...,n,
7Tl(8) = (Sl,7TI<3_l)) (540)

(7'(s—;) is a uniformly distributed random permutation of s_;, and m(s) is
a tuple with s; being its first element and and 7'(s_;) making up the other

n — 1 elements), and

O'k(t) = (tl,tg,...,tk> (541)

if t = (tl,t27 ,tn) and n > k.

5.5.5 Results Analysis Under Fitness Version 3

Equilibria using 3rd Fitness for a=4, =40, n=8
07 T T T T T T T

0.6 b

0.5 b

Figure 5.4: Equilibria using 37}
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The results under *T; (Figure 5.4) appear to confirm the suspicions that
the outliers are related to population size, rather than the number of workers
in the game; in the results from the simulation run with a larger population
size (20 instead of 8) but using the old number of workers (m = 8), the
outliers are almost completely eliminated (this was confirmed by reruns of
the simulation).

For b € [0,0.42] and for b € [0.54,0.8], the simulation and theoretical
results match closely. On the interval [0.42,0.54], the simulation produces
two levels: a high effort and a low effort. Here we can see that the genetic
algorithm has trouble discerning between optimal and slightly suboptimal
equilibria - even when the higher effort is suboptimal, it is still an ”attractor”
and the simulation converges to it regularly. It is likely that a simulation
running for longer (a larger number of generations) is more likely to converge
to the optimum, rather than the suboptimum.

The theoretical middle equilibrium (that exists only between 0.376 and
0.452) is never attained; this is not unexpected as only the high- and low-
effort equilibria are stable under adaptive dynamics; a small deviation (up,
down) from the medium-effort equilibrium induces a movement (up, down)

towards the high- or low-effort equilibrium level ([Huck et al., 2003]).

5.6 Remarks

e The reader may have noticed that none of the fitness functions discussed
above were specifically engineered to achieve a symmetric equilibrium,
but the populations invariably converged, with high probability, to a
common value after a certain number of rounds. This property, a by-
product of the underlying genetic algorithm, was a result of careful
choices of crossover and mutation probabilities: mutation was chosen

to be suitably low (p = 0.02) so as to prevent the population from fluc-



96

CHAPTER 5. THE CONTRACT GAME

tuating chaotically, and crossover probability was less than 1 (p = 0.6)
so that the parent strategies had a good chance of being included in the
next generation’s population, (this meant that subsequent populations

became increasingly homogenous).

>Ts and *T make the GGA far more computationally expensive than
'Ty; 1T} requires the game utility calculation (which is a constant-time
operation) to be carried out only once for every generation, and hence
its execution time is O(1). 2T evaluates the best possible effort for a
strategy in its current situation, and thus requires the game being run
d times for every strategy, where d is the number of possible values the
worker effort can take (d = |D|, where D is as in Equation 5.23). This
is done for every one of k players in the contract game being played,
thus making the cost O(kd). *T; does a similar search for the best
effort in the situation as 2T}, but it divorces the number of players in
the contract game from the number of strategies in each population
(which we shall denote by n) and so its cost is O(nd) (of course, n > k

is a necessary condition).

5.7 Conclusion

Armed with only the minimal theoretical analysis of the problem, we have

been able to predict, to a reasonably high degree, the theoretical solution for
the Contract Game. We have shown that the GGA has its place as a "pre-

emptive” problem analysis tool, (one that can give us some idea of what

results we can expect to get from the analytic methods) and illustrated some

of the pitfalls to be avoided when applying this technique.



Chapter 6
Conclusion

It is hoped that this thesis managed to successfully formalise the main con-
cepts in the application of the genetic algorithm to games, and that adequate
examples and illustrations have been provided to demonstrate how this tech-
nique can be a useful tool in game analysis.

The next step along this research path could involve looking for inter-
relationships between Markov chain theory (that has been so successfully
applied to the analysis of genetic algorithms) and equilibrium convergence
in games, as well as exploring other problems in which the genetic game

algorithm could prove useful.

97
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Appendix A
Code Listings

This appendix discusses the details of the GGA simulation (Section A.1),
and the Matlab code used in the Contract Game chapter (Section A.2).

A.1 The GGA Simulation

The simulation for the Axelrod and the Contract Game experiments is writ-
ten in Java and contains more than 4800 lines of code. It does not require
extensive explanation here, as the aim throughout was to try to imitate the
theoretic function definitions as closely as possible, and this was largely pos-
sible.

A.1.1 Common Code

99



100 APPENDIX A. CODE LISTINGS

m\mnit‘ 08 ¥
EE thesis

E|EEI general
E|EH evaluation
D] Chromaosome. java 140 03/02/06 0057 jake
E] DecodeFunction.java 131 27001/06 12:36 jake
D] EncodeFunction.java 131 2701006 12;36 jake
D} FitmessFunction.java 159 07/02/06 01,07 jake
0
[+

extensivegame

D} ExtensiveGame.java 151 06/02/06 16:16 jake

; |_Tj ExtensiveGameResults,java 102 24/01/06 01:01 jake

m InformationPartition. java 103 24/01)06 01:02 jake

D PerfectInformationPartition. java 153 06/02/06 18:44 jake

i D PerfectInformationTPeriodRepeatedGane. java 153 06/02/06 15:44 jake
D PlaverFunckion.java 105 24/01/06 01;02 jake
D] TPeriodRepeatedzame.java 151 06/02J06 16:16 jake

EIEE, genetic
[+

[

[y

m CrossoverFunction.java 136 31/01)06 17:37 jake

D} MutationFunction.java 133 270106 1816 jake

; |_Tj Pair.java 136 31/01J06 17:37 jake

m SelectionFunchion.java 136 31/01/06 17137 jake

D] TerminatingCondition. java 140 03/02/06 00:57 jake

-8 simulation

D] EvaluationFunctions, java 159 07/02/06 01:07 jake

D] ExtensiveGamesimulation java 165 10/02/06 21:51 jake

D} GeneticFunctions, java 139 01/02/06 11:55 jake

D} SimulationResults. java 170 1202006 1309 jake

I':'IEE, strategicgame

- B[]} StrategicGame.java 95 24/01/06 01:01 jake

EEH skrategy

D] AhstractExtensiveGamewithPerfectInformationstrategy. java 127 27/01/06 02:20 jake
D] ExtensiveGamestrategy java 127 27[01J06 02:20 jake

D] ExtensiveGamewithPerfectInformationstrateqy java 127 27001706 02:20 jake
m Action.java 97 24J01/06 01:00 jake

E] DefaultPlaver.java 151 06/02/06 16:16 jake

m Flaver.java 97 24J01/06 01:00 jake

- 1 il

Figure A.1: Common Classes and Interfaces
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public void run() {
while (! termCond . isSatisfied ()) {
roundCount++;
//System . out. printin (”Round "+roundCount);
List <Chromosome> newPopulation = new LinkedList<
Chromosome > () ;
List <Chromosome> lastPopulation = populationSequence
.get (roundCount —1);
List<Double> fitness = populationFitnessSequence. get
(roundCount — 1);
for (int i = 0; i < populationSize/2; i++) {
Pair<Chromosome> pair ;
pair = geneticFns.selectionFns[i]. select (
lastPopulation , fitness);
pair = crossoverPair (pair);

pair = mutatePair(pair);

newPopulation.add (pair.childl);

newPopulation.add(pair.child2);

addAndEvaluatePopulation (newPopulation) ;

results = new SimulationResults<I>(populationSequence,

populationFitnessSequence , evalFns);

\S

Listing A.1: The Main Loop of the Simulation

A.1.2 Axelrod Simulation

/*
* Created on 18—Dec—2005
*/

package thesis.impl.axelrod;

import java.util.HashSet;
import java.util.Hashtable;

import java.util.Map;

import java.util.Set;
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| £4 - [ pilgs-0-Q-|E-|s-- 0o | B#E -]

R=R-0S

Eﬂ general
= impl
EI:-E axelrod
E|EE agent
DE, Agent.java 128 27/01)06 02:32 jake
; DE, AxelrodAgent TransitionFunction,java 128 27/01/06 02:32 jake
DE, AxelrodOutputFunction. java 129 27/01/06 02:57 jake
DE, CukputFunction.java 122 26/01/06 21:15 jake

- [1] State.java 156 DG/0Z/06 23:13 jake

DE, TransitionFunction.java 126 27/01/06 02:32 jake
=4 fitness

EIEEi donebyhand
[5] wi_60.java 119 240106 17:31
[4] wz_91.java 119 240106 17:31
I_ja W3_d40,java 119 2401706 17:31
[1] wa_67.java 119 24/01)06 17:31
[4] w5_76.java 119 240106 17:31
I_ja WE_77 java 119 24001706 17:31
[5] w7_85.java 119 24/01)06 17:31
- [J] Wa_47 java 119 240106 17:31
-4} generated
; DE, Axelrod19305krategy . java 119 24/01/06 17:31 jake
(X} Axelrod1980TFT java 119 24/01/06 17:31 jake
DE, Axelrodalc,java 119 24/01/06 17:31 jake
DE, Axelrodstrateqyadapter.java 127 27/01/06 02:20 jake
DE, DynamicAxelrodFitness. java 193 05/03/06 23:35 jake
DE, CriginaldelrodFitness, java 159 07/02J06 01:07 jake
DE, AxelrodAgentDecodeFunction.java 155 06/02/06 23:12 jake
EE, AxelrodAgentEncodeFunction.java 131 27001/06 12:36 jake
DE, AxelrodAgentstrategy java 165 10/02J06 21:51 jake
DE, Axelrod3electionFunction. java 137 31/01/06 23:24 jake
EE, FixedRoundsTerminatingCondition. javwa 161 07/02/06 01:41 jake
DE, PrisonersDilermma.java 96 24/01/06 01:00 jake
DE, SigmaSelection.java 137 31/01/06 23:24 jake
- contract

EIEE genetic, common

ake
ake
jake
ake
jake
ake
ake
jake

Figure A.2: The Axelrod Classes
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import thesis.general.Action;
import thesis.general.Player;

import thesis.general.strategicgame.StrategicGame;

public class PrisonersDilemma implements StrategicGame {
Set<Player> players;
Set<Action> actions;

public static final Player pl = new Player () {
public String getName() {
return "P17;

}

public String toString() { return getName(); }

}s

public static final Player p2 = new Player () {
public String getName() {
return "P2”;
}
public String toString() { return getName(); }
b

public static final Action cooperate = new Action() {
public String getName() {
return ” Cooperate”;
}
public String toString() { return getName(); }
i

public static final Action defect = new Action() {
public String getName() {
return ” Defect”;
}
public String toString() { return getName(); }
I

public PrisonersDilemma () {
players = new HashSet<Player >();
players.add(pl);
players.add(p2);

actions = new HashSet<Action >();

actions.add(cooperate) ;
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actions.add(defect);

public Set<Player> getPlayers() {

return players;

public Set<Action> getActions(Player p) {

return actions;

public Map<Player , Double> getUtility (Map<Player, Action>
actionProfile) {

Action plAction = actionProfile.get(pl);

Action p2Action = actionProfile.get(p2);

Hashtable<Player , Double> payoffs = new Hashtable<Player ,
Double>();

if (plAction = cooperate & & p2Action = cooperate) {
payoffs.put(pl, 3.0);
payoffs.put(p2, 3.0);

}
else if (plAction = cooperate && p2Action = defect) {
payoffs.put(pl, 0.0);
payoffs.put(p2, 5.0);
}
else if (plAction = defect && p2Action = cooperate) {
payoffs.put(pl, 5.0);
payoffs.put(p2, 0.0);
}
else {
// both defect
payoffs.put(pl, 1.0);
payoffs.put(p2, 1.0);
}

return payoffs;

public String toString() {

return ” Prisoner ’s_.Dilemma” ;

Listing A.2: The Prisoner’s Dilemma Game




Al

THE GGA SIMULATION 105

/*

* Created on 20—Dec—2005

*/

package thesis.impl.axelrod. fitness;

import
import

import

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

import

java.util .HashMap;

java.util. List;

java.util .Map;

thesis.
thesis .

thesis.

thesis
thesis
thesis
thesis
thesis

thesis

thesis.
thesis .
thesis.
thesis.

thesis.

thesis
thesis

thesis

general .
general .
general .
.general .
.general.
.general .

.general

Player;

evaluation . FitnessFunction;

extensivegame . ExtensiveGameResults;

extensivegame . PerfectInformationTPeriodRepeatedGame ;
extensivegame . TPeriodRepeatedGame;

strategicgame . StrategicGame;

.strategy . ExtensiveGameStrategy ;

.impl.axelrod . AxelrodAgentStrategy;

.impl. axelrod . PrisonersDilemma ;

impl. axelrod. fitness .donebyhand. W1.60;
impl. axelrod. fitness .donebyhand . W2.91;
impl. axelrod. fitness .donebyhand.W3_40;
impl. axelrod. fitness .donebyhand. W4.67;
impl. axelrod. fitness.donebyhand . W5.76;

.impl.axelrod. fitness .donebyhand . W6_77;
.impl. axelrod . fitness .donebyhand . W7_85;
.impl. axelrod. fitness .donebyhand. W8.47;

public class OriginalAxelrodFitness implements FitnessFunction<
AxelrodAgentStrategy> {

private ExtensiveGameStrategy [] axStrategies;

private TPeriodRepeatedGame game;

private

double[] w ;

int stages;

public OriginalAxelrodFitness () {

stages = 151;

StrategicGame constituentGame = new PrisonersDilemma () ;

game = new PerfectInformationTPeriodRepeatedGame (

constituentGame , stages);

axStrategies = new ExtensiveGameStrategy [9];

axStrategies [1] = new AxelrodStrategyAdapter (game, new W1_60

()
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axStrategies [2] = new AxelrodStrategyAdapter (game, new W2.91
0);

axStrategies [3] = new AxelrodStrategyAdapter (game, new W3_40
0)s

axStrategies [4] = new AxelrodStrategyAdapter (game, new W4_67
0);

axStrategies [5] = new AxelrodStrategyAdapter (game, new W5_76
0);

axStrategies [6] = new AxelrodStrategyAdapter (game, new W6_77
0);

axStrategies [7] = new AxelrodStrategyAdapter (game, new W7.85
0);

axStrategies [8] = new AxelrodStrategyAdapter (game, new W8_47

0);

public double evaluate (ExtensiveGameStrategy strategy) {
w = new double [9];
Map<Player , ExtensiveGameStrategy> strategyProfile = new
HashMap<Player , ExtensiveGameStrategy >();
// set the given strategy to player 1
strategyProfile.put(PrisonersDilemma.pl, strategy);
for (int i = 1; i <= 8; i++) {
strategyProfile.put(PrisonersDilemma.p2,
axStrategies[i]);
ExtensiveGameResults results = game.runGame(
strategyProfile);
// extract how well the given strategy fared against
our set axelrod strategies
w[i] = results.getUtility ().get(PrisonersDilemma.pl)
// don’t forget to remove the normalisation
w[i] = w[i] x stages;
}
return 110.55 + (0.1574) = w[2] + (0.1506) * w[l] + (0.1185)
* w[3]
+ (0.0876) * w[4] + (0.0579) * w[6] + (0.0492) * w
[7]
+ (0.0487) * w[5] + (0.0463) x w[8];

public double[] getResults () {

return w;
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public double evaluate (AxelrodAgentStrategy strategy , List<

AxelrodAgentStrategy> population) {

return evaluate(strategy);

Listing A.3: Axelrod Static Fitness (Definition 24)

*/

import
import

import

import
import
import
import
import
import
import
import

import

package thesis.

* Created on 20—Dec—2005

impl. axelrod. fitness;

java.util .HashMap;

java.util. List;

java.util .Map;

thesis .
thesis.
thesis .
thesis.
thesis.
thesis.
thesis.

thesis.

thesis

general

general .
general .
general .
general .
general .

general .

.Player;

evaluation . FitnessFunction;

extensivegame .
extensivegame .
extensivegame .

strategicgame.

ExtensiveGameResults;
PerfectInformationTPeriodRepeatedGame;
TPeriodRepeatedGame ;

StrategicGame;

strategy . ExtensiveGameStrategy ;

impl. axelrod. AxelrodAgentStrategy ;

.impl. axelrod . PrisonersDilemma;

AxelrodAgentStrategy> {

public class DynamicAxelrodFitness implements FitnessFunction<

private TPeriodRepeatedGame game;

private

int stages;

public DynamicAxelrodFitness() {

stages

= 151;

StrategicGame constituentGame = new PrisonersDilemma () ;

game = new PerfectInformationTPeriodRepeatedGame (

constituentGame ,

stages);

public double evaluate (ExtensiveGameStrategy

strategyWeWantResultsFor , ExtensiveGameStrategy otherStrategy) {
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Map<Player , ExtensiveGameStrategy> strategyProfile = new
HashMap<Player , ExtensiveGameStrategy >();

// set the given strategy to player 1

strategyProfile.put(PrisonersDilemma.pl,
strategyWeWantResultsFor) ;

strategyProfile.put(PrisonersDilemma.p2, otherStrategy);

ExtensiveGameResults results = game.runGame(strategyProfile)

// exztract how well the given strategy fared against our set
azelrod strategies

return results.getUtility ().get (PrisonersDilemma.pl);

public double evaluate (AxelrodAgentStrategy strategy , List<
AxelrodAgentStrategy> population) {
double sum = 0;
for (AxelrodAgentStrategy popnMember : population) {
sum = sum + evaluate(strategy , popnMember) ;

}

return sum/(double) population.size ();

Listing A.4: Axelrod Dynamic Fitness (Definition 25)

A.1.3 Contract Game Simulation

/*
* Created on 06—Feb—2006
*/

package thesis.impl.contract;

import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util. List;

import java.util.Map;

import java.util.Set;
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File Edit Source Refactor MNavigate Search Project Run Window  Help

G | B # G-

:ﬂ axelrod
EI:-E cantrack
Eﬂa simulation

'_JE, ContractGamesimulation.java 173 17/02/06 01:25 jake

DE, ResulksAnalyser.java 165 10002006 21:51 jake

DE, ResultsPrinter.java 171 16/02/06 14:34 jake

socialpreference

DE, EfficiencyPreference.java 169 11/02(06 20:50 jake

DE, SocialPreference.java 169 11/02/06 20;50 jake

DE, ZeroPreference.java 169 11)02/06 20:50 jake

DE, ContrackGame.java 170 12/0Z106 13:09 jake

DE, ContrackGameDecodeFunction. java 165 10/02/06 21:51 jake

DE, ContrackGameEncodeFunction.java 170 12/02/06 13;09 jake

DE, ContrackGameFitnessFunchionyl . java 172 17/02/06 00:26 jake

DE, ContrackGameFitnessFunctiony 1 ZeroPreference,java 170 12/02/06 13:09 jake
DE, ContrackGameFitnessFunchiony2 java 173 17/02/06 01:28 jake

DE, ContrackGameFitnessFunctionyZZeroPreference java 171 16/02/06 14:34 jake
EE, ConkrackGameFitnessFunchiony3.java 172 17J02/06 00:26 jake

DE, ContrackGameFitnessFunctionV 34l java 173 17/02/06 01;28 jake

DE, CaontrackGamePrincipaltrateqy java 154 06J02/06 23:07 jake

DE, ContrackGameMorkerStrategy.java 165 10/02/06 21;51 jake

DE, Principaldction.java 153 0602106 13:44 jake

DE, Workerdction,java 153 06/02/06 15:44 jake

T
=2

= aenekic, common
DE, ChromosomeGenerator.java 133 27/01/06 15:16 jake
DE, DefaultMutationFunction. java 133 27/01j06 18:16 jake
DE, CnePointCrossoverFunckion.java 138 31/01/06 23:30 jake
= strategy . common

(3} Al java 127 27/01/06 02:20 jake
(X} Al java 127 27/01)06 02:20 jake
DE, Pavlow.java 127 27/01J06 02:20 jake
DE, TFT.java 127 27/01/06 02:20 jake

Figure A.3: The Contract Game Classes
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import thesis.general.Action;

import thesis.general.DefaultPlayer;

import thesis.general.Player;

import thesis.general.extensivegame.ExtensiveGame;

import thesis.general.extensivegame.ExtensiveGameResults;

import thesis.general.extensivegame.InformationPartition;

import thesis.general.extensivegame.PerfectInformationPartition;

import thesis.general.extensivegame.PlayerFunction;

import thesis.general.strategy . ExtensiveGameWithPerfectInformationStrategy ;

import thesis.impl.contract.socialpreference. SocialPreference;

public class ContractGame implements ExtensiveGame<
ExtensiveGameWithPerfectInformationStrategy> {
public static Player principal = new Player () {
public String getName() { return ”principal”; }

b
public Player workers|[];

private static PlayerFunction playerFunction = new PlayerFunction ()
{
public Set<Player> getPlayer (List <Map<Player , Action>>

history) {

if (history.isEmpty()) {
return Collections.singleton (principal);

}
else {

return workerSet;

s

private static Set<Player> workerSet;

private static Set<Player> playerSet;

private InformationPartition infoPartition = new
PerfectInformationPartition () ;

private int numberOfWorkers;

private SocialPreference socialPreference;

@SuppressWarnings (” unchecked”)
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public ContractGame(int numberOfWorkers, SocialPreference
socialPreference) throws IllegalArgumentException {

if (numberOfWorkers <= 1) {

throw new IllegalArgumentException (”Number.of.
workers_must_be_>_1");

}

else {
this . numberOfWorkers = numberOfWorkers;

workers = new Player [numberOfWorkers |;
for (int i = 0; i < numberOfWorkers; i++) {
workers[i] = new DefaultPlayer (" worker.”4+ (i+41));

this.socialPreference = socialPreference;

playerSet = new HashSet(Arrays.asList (workers));
playerSet.add(principal);

public Set<Player> getPlayers () {

return playerSet;

public InformationPartition getInformationPartition(Player p) {

return infoPartition;

public PlayerFunction getPlayerFunction () {

return playerFunction;

public ExtensiveGameResults runGame (

Map<Player ,
ExtensiveGameWithPerfectInformationStrategy >
strategyProfile) {

// set up an initial (empty) history
List<Map<Player , Action>> history = new LinkedList<Map<
Player, Action>>();

// init the action profile
Map<Player , Action> actionProfile = new HashMap<Player ,
Action >();
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// first the principal makes a move
actionProfile.put(principal, strategyProfile.get(principal).
getMove (history , principal));

history .add(actionProfile);
actionProfile = new HashMap<Player, Action>();

// calculate the action profile for each player and for the
current history

for (Player p : workers) {
// work out the player’s information partition

InformationPartition infoPartition

getInformationPartition (p);
// work out the information set from the history
Set<List <Map<Player , Action>>> infoSet =
infoPartition . getInformationSet (history);
ExtensiveGameWithPerfectInformationStrategy strategy
= strategyProfile.get(p);
Action playerAction = strategy .getMove(infoSet, p);
actionProfile.put(p, playerAction);
}
// we need to update the history
history .add(actionProfile);

return new ExtensiveGameResults(history , getUtility (history)

)

public Map<Player, Double> getUtility (List<Map<Player, Action>>
history) {
PrincipalAction principalsAction = (PrincipalAction) history
.get (0).get(principal);
Map<Player, Action> workersActions = history.get(1);

Map<Player, Double> utility = new HashMap<Player , Double>();

double a = principalsAction.getBaseWage () ;
double b = principalsAction.getBonus();

Map<Player , Double> workersEfforts = new HashMap<Player ,
Double>();

for (Player worker : workersActions.keySet()) {

double x = ((WorkerAction) workersActions.get (worker
)) . getValue () ;
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workersEfforts.put(worker, x);

double average = averageOfOthers(worker,
workersActions) ;
utility .put(worker, calculateWorkerUtility (x,

average, a, b));

// calculate the wutility for the principal
utility .put(principal , calculatePrincipalUtility (a,b,
workersEfforts));

return utility ;

public static double averageOfOthers(Player worker, Map<Player ,
Action> workersActions) {
double sum = 0;
for (Player otherWorker : workersActions.keySet()) {
if (!(worker = otherWorker)) {
sum = sum + ((WorkerAction) workersActions.

get (otherWorker)) . getValue () ;

}

double average = sum / (double) (workersActions.size() — 1);

return average;

public double calculatePrincipalUtility (double a, double b, Map<
Player, Double> workersEfforts) {
double y = 0;

int n = workersEfforts.size ();

for (Player worker : workersEfforts.keySet()) {
y =y + workersEfforts.get(worker);
}
double principalsUtility =y — n * (a + b *x y / (double) n);

return principalsUtility;

public double calculateWorkerUtility (double x, double xhat, double a
, double b) {
double y = xhat * (numberOfWorkers — 1) + x;
double wage = a + (b * y / (double) numberOfWorkers) ;
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return wage — 0.5 % x % x — socialPreference.evaluate (x
xhat, b);

)

Listing A.5: The Contract Game (Definition 28)

s I
V&
* Created on 07—Feb—2006
*/

package thesis.impl.contract;

import java.util.HashMap;
import java.util.List;

import java.util .Map;

import thesis.general.Player;

import thesis.general.evaluation.FitnessFunction;

import thesis.general.extensivegame.ExtensiveGameResults;

import thesis.general.strategy.ExtensiveGameWithPerfectInformationStrategy ;
import thesis.impl.contract.socialpreference.EfficiencyPreference;

import thesis.impl.contract.socialpreference. SocialPreference;

public class ContractGameFitnessFunctionV1 implements FitnessFunction<
ContractGameWorkerStrategy> {
protected ContractGame game;

private ContractGamePrincipalStrategy principal;

Vix:

* This fitness function uses the efficiency preference with
parameters alpha, beta

* @param numberOfWorkers

* @param alpha

* @param beta

* @param a

* @param b

*/

public ContractGameFitnessFunctionV1 (int numberOfWorkers, double
alpha, double beta, double a, double b) {

this (numberOfWorkers, a, b, new EfficiencyPreference (alpha,
beta));
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protected ContractGameFitnessFunctionV1(int numberOfWorkers, double

Al

SocialPreference p) {

a, double b,

game = new ContractGame (numberOfWorkers, p);
principal = new ContractGamePrincipalStrategy (a,b);

}

public double evaluate (ContractGameWorkerStrategy strategy , List<

ContractGameWorkerStrategy> population) {
results = playGame(population);
population, results) —

ExtensiveGameResults
return getStrategyUtility (strategy ,

getMinimum (results);

}

protected double getStrategyUtility (ContractGameWorkerStrategy

strategy , List<ContractGameWorkerStrategy> population ,
population .indexOf(

ExtensiveGameResults results) {
indexOfStrategyBeingEvaluated

int
strategy ) ;
Player playerOfStrategyBeingEvaluated = game.workers|

indexOfStrategyBeingEvaluated ];

return results.getUtility ().get(
playerOfStrategyBeingEvaluated);

protected ExtensiveGameResults playGame(List<
ContractGameWorkerStrategy> population) {
Map<Player , ExtensiveGameWithPerfectInformationStrategy >
strategyProfile = new HashMap<Player ,
ExtensiveGameWithPerfectInformationStrategy >();
strategyProfile.put(ContractGame. principal , principal);
i++) {

i < population.size ();
population. get (

for (int i = 0;
strategyProfile.put(game. workers[i],

));
}
return game.runGame(strategyProfile);
private double getMinimum (ExtensiveGameResults results) {

double minimum = Double . MAX VALUE;
results.getUtility () .keySet()) {
results. getUtility (). get

for (Player p
minimum = Math.min (minimum,

(P));
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}

return minimum;

Listing A.6: 'T} (Equation 5.24)

( I
Ve
x Created on 07—Feb—2006
*/

package thesis.impl.contract;
import java.util.List;

import thesis.general.extensivegame.ExtensiveGameResults;
import thesis.impl.contract.socialpreference.EfficiencyPreference;

import thesis.impl.contract.socialpreference.SocialPreference;

public class ContractGameFitnessFunctionV2 extends
ContractGameFitnessFunctionV1 {

protected double minValue, maxValue, step;

Vix:
* This fitness function uses the efficiency preference with
parameters alpha, beta
* @param numberOfWorkers
* @param alpha
* @param beta
* @param a
* @param b
*/
public ContractGameFitnessFunctionV2 (int numberOfWorkers, double
alpha, double beta, double a, double b, double minValue, double
maxValue, double step) {
this (numberOfWorkers, a, b, new EfficiencyPreference (alpha,
beta), minValue, maxValue, step);
this. minValue = minValue;
this . maxValue = maxValue;

this.step = step;

public ContractGameFitnessFunctionV2(int numberOfWorkers, double a,
double b, SocialPreference p, double minValue, double maxValue,
double step) {
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super (numberOfWorkers, a, b, p);
this . minValue = minValue;
this . maxValue = maxValue;

this.step = step;

public double evaluate (ContractGameWorkerStrategy strategy , List<
ContractGameWorkerStrategy> population) {

ExtensiveGameResults results;

results = playGame(population);
double actualUtility = getStrategyUtility (strategy ,

population, results);

double maximumUtility = Double. MIN.VALUE;
int index = population.indexOf(strategy);
for (int i = 0; i * step 4+ minValue < maxValue; i++4) {
ContractGameWorkerStrategy alternativeStrategy = new
ContractGameWorkerStrategy (minValue + ixstep,

null);

population.set (index, alternativeStrategy);

results = playGame(population);

double newUtility = getStrategyUtility (
alternativeStrategy , population, results);

population.set (index, strategy);
maximumUtility = Math. max(maximumUtility , newUtility

)

//return Math.maz(actualUtility / mazimumUtility, 0);

return actualUtility / maximumUtility ;

}
NS
Listing A.7: 2T} (Equation 5.36)
s ~
/%
x Created on 07—Feb—2006
*/

package thesis.impl.contract;

import java.util.Collections;
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import java.util.LinkedList;

import java.util. List;
import thesis.impl.contract.socialpreference.SocialPreference;

public class ContractGameFitnessFunctionV3Alt extends
ContractGameFitnessFunctionV2 {
public ContractGameFitnessFunctionV3Alt(int numberOfWorkers, double
a, double b, SocialPreference p, double minValue, double
maxValue, double step) {
super (numberOfWorkers, a, b, p, minValue, maxValue, step);

public ContractGameFitnessFunctionV3Alt(int numberOfWorkers, double
alpha, double beta, double a, double b, double minValue, double
maxValue, double step) {

super (numberOfWorkers, alpha, beta, a, b, minValue, maxValue

, step);

public double evaluate (ContractGameWorkerStrategy strategy , List<
ContractGameWorkerStrategy> population) {
List <ContractGameWorkerStrategy> subPopulation =
pickSubpopulationContainingStrategy (strategy , population
E

return super.evaluate (strategy , subPopulation);

protected List<ContractGameWorkerStrategy>
pickSubpopulationContainingStrategy (ContractGameWorkerStrategy
strategy ,
List <ContractGameWorkerStrategy> population) {
List<ContractGameWorkerStrategy> clonedPopulation = new
LinkedList<ContractGameWorkerStrategy >(population) ;
List <ContractGameWorkerStrategy >
strategiesThatPlayedInTheLastGame = new LinkedList<
ContractGameWorkerStrategy >() ;

Collections .shuffle (clonedPopulation);

strategiesThatPlayedInTheLastGame.add (strategy) ;

int counter = 0;

while (strategiesThatPlayedInTheLastGame.size () != game.
workers.length) {
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ContractGameWorkerStrategy s = clonedPopulation. get(

counter);
if (s != strategy) {
strategiesThatPlayedInTheLastGame.add(s);
}
counter-++;
}
return strategiesThatPlayedInTheLastGame;
}
}
S

Listing A.8: 3T} (Equation 5.39)

A.2 DMatlab Programs

-
function [p_.0] = p(b,x,alpha, beta)

if(x >= D)
p-0 = alpha;
elseif(x < b)
p-0 = alpha * exp(—beta * (b—x)"2);

end
S

Listing A.9: The peer-pressure f'n p(b,x)
function [p-0, p-1, p-2, F, Flst, F2nd] = get_fns(b,n,alpha, beta)
p-0 = @(x)p(b,x,alpha,beta);
p-1 =@(x)-2 % beta *x (b — x) * p_.0(x);
p-2 =Q(x)(—2 * beta + 4 x (beta.”2) *x (b — x)."2) * p.0(x);
Fooo=a(x) (b/n)*(1 +n % p0(x)) / (14 p0(x));
Fist = @(x)(b  (1/n— 1) x p.1(x)) / (1 + p0(x)). 2);
F2nd = @(x) b * (1/n — 1) % (2 % p_-1(x)."2 — p-2(x) = (1 + p-0(x))) / ((1 +
L p-0(x))."3);

Listing A.10: The f'n that declares F, p and their 1st and 2nd derivatives

(function [x1, x2, x3] = zeros_fn(b,n,alpha,beta)
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x1l = 0; x2 = 0; x3 = 0;
[p-0, p-1, p-2, F, Flst, F2nd] = get_-fns(b,n,alpha, beta);

g =Q(x)F(x) — x;
glst = Q(x)Flst(x) — 1;
g2nd = F2nd;

% first we determine whether g” has 0 or 1 roots
z1 = fzero(g2nd, b/2);
if( z1 "= NaN && z1 > (b/n) && zl1 < b)
% g” has 1 root at zl1
num_g2nd_roots = 1;
else
% g” has 0 roots
num_g2nd_roots = 0;
end

% now we determine whether g’ has 0, 1 or 2 roots
if (num_g2nd_roots = 1)
% g’ has 0 or 2 roots
if (sign(glst(zl)) = sign(glst(b)))
num_glst_roots = 0;
else
num-glst_roots = 2;
yl = fzero(glst, [(b/n) zl]);
y2 = fzero(glst, [zl b ]);
end
else

% g’ has 0 or 1 roots

if (sign(glst(zl)) = sign(glst(b)))
num-_glst_roots 0;

else
num._glst_roots = 1;

vyl = fzero(glst, [(b/n) b]);
end

end

% now we determine whether g has 1, 2 or 8 roots
if (num_glst_roots == 0)

% g has only 1 rToot

x1 = fzero(g, [(b/n) b]);

elseif (num_glst_roots 1)

% g has 2 roots
xl = fzero(g, [(b/n) y1]);
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x2 = fzero(g, [yl bl);
else
% g’ has 2 roots, so g has 1 or 8 roots
if (sign(g(b/n)) = sign(g(yl)))
% only 1 root
x1 = fzero(g, [y2 b]);
elseif (sign(g(y2)) — sign(g(b)))
% only 1 root
x1 = fzero(g, [b/n yl]);

else
% 3 roots
x1 = faero(g, [(b/n) v1]);
x2 = fzero(g, [yl v2]);
x3 = fzero(g, [y2 b]);
end

end
L

Listing A.11: The f'n that finds the equilibrium x value(s) for a given b

e 1
n=_;
alpha=4;
beta=40;

clear y; clear k;
limit =0.8;
step=0.001;
y=0:step:limit;
m=size (y);

for j=1m(2)

[x1,x2,x3] = zeros_-fn(y(j),n,alpha,beta);
k(j,1) =vy(i);

k(j,2) = x1;

k(j,3) = x2;

k(j,4) = x3;

if (j>1 && x3 =— 0 & k(j—1,4) "= 0)
a2 = j
end

end
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xsegl = k(1:a2—-1,1);
xseg2 = k(al:a2—-1,1);
xseg3 = k(al:m(2),1);

ysegl = [k(1l:al—1,2);k(al:a2-1,4)];
yseg2 = k(al:a2-1,3);
yseg3 = k(al:m(2),2);

xaxis = [xsegl;flipud(xseg2);xseg3];
yaxis = [ysegl;flipud(yseg2);yseg3];

plot (xaxis, yaxis);

hold on;

plot (xaxis(1:0.5/step), xaxis(1:0.5/step), '—b’);

plot (xaxis, xaxis/n, —b’);

xlabel(’b’)

ylabel(’x’)

title (strcat (’Equilibria.for.\alpha=’ num2str(alpha),’,_.\beta=’ , num2str(beta
), ,oworker_number_k=" ,num2str(n)))

hold off;

figure (gcf);

NS

Listing A.12: The script that calculates and plots the equilibrium (b,x) pairs
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Miscellaneous

B.1 History - State Mapping

cC CcC cC
DC ccC cC
CD ccC CcC
DD ccC CcC
ccC DC ccC
DC DC cC
CD DC CcC
DD DC cC
CcC CD cC
DC CD ccC
CD CD CcC
DD CD CcC
CcC DD cC
DC DD ccC
CD DD ccC
DD DD CcC
CC CcC DC
DC cC DC
CD cC DC
DD ccC DC
CcC DC DC
DC DC DC
CD DC DC
DD DC DC
25 CcC CD DC
26 DC CD DC
27 CD CD DC
28 DD CD DC
29 CcC DD DC
30 DC DD DC
31 CD DD DC

=
HO@OO\IC:U‘»PDJN))—‘»D

NN NN R R R s e e
A O N RO OO G A WN

123



124 APPENDIX B. MISCELLANEOUS

32 DD DD DC
33 cC ccC CD
34 DC ccC CD
35 CD CcC CD
36 DD CcC CD
37 cC DC CD
38 DC DC CD
39 CD DC CD
40 DD DC CD
41 cC CD CD
42 DC CD CD
43 CD CD CD
44 DD CD CD
45 cC DD CD
46 DC DD CD
47 CD DD CD
48 DD DD CD
49 CcC CcC DD
50 DC cC DD
51 CD cC DD
52 DD [e]e} DD
53 cC DC DD
54 DC DC DD
55 CD DC DD
56 DD DC DD
57 (e]e] CD DD
58 DC CD DD
59 CD CD DD
60 DD CD DD
61 ccC DD DD
62 DC DD DD
63 CD DD DD
64 DD DD DD
Table B.1: The Enumeration of History Partitions




Appendix C

More on the GGA

In Chapter 3, we introduced versions of the GGA that deal with certain
symmetric games. In this appendix, we shall try to introduce new versions
that accomodate asymmetric games as well (that is, games with more than
one "type” of player).

The biggest issue to contend with when switching from symmetric to
asymmetric games is encoding/decoding. Let us say, for instance, that we
are looking for equilibrium (action or strategy) profiles in a given game. If
the game is symmetric, then the natural choice is for each chromosome to
represent one action/strategy, because all of the players are the same. If
the game is asymmetric, then there are at least two natural representation
schemes. One involves making one chromosome represent one profile, with
different parts of the chromosome encoding actions/strategies for a different

player:

[11213]. [6][7]8]9].[12]...[68]69] 70]

~
player 1 player 2 player n

With this approach, problems arise when trying to engineer a fitness function

for the algorithm: how do we define the fitness of a action/strategy profile?
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The alternative solution would be to for each chromosome to represent
only one action/strategy (same as for a symmetric game), but this would
require a population to exist for every different type of player in the game,
each with its own encoding/decoding scheme. This is the approach that we

shall explore deeper in this appendix.

C.1 Symmetry Partitions

The concept of a symmetry partition attempts to capture which players are
the ”"same” as other players in the game; here, "same” implies the inter-
changeability inter-relation which all of the players in a symmetric game

have.

Definition 36 (Symmetry Partition). The partition J of the player set N in
an n-player strategic game G = (N, (A;), (u;)) is a symmetry partition if
the following conditions hold: for every partition J € J,

1. Every player in J has the same action space

2. Every player in J has a symmetric payoff function in the following
sense: pick two action profiles a,a’ € A and a pair of players i,j € J
arbitrarily. If a; = a}; and a_; can be obtained from a’; by a permuta-

tion of actions, then u;(a) = u;(a’).

We can then write G as a a game (I, (4;), (u;)), where J = {1,2,...,k} is
now the enumeration of the player symmetry partitions, and A; and u; are

the action set and utility function for the ™ symmetry partition.

Straight away we can see that an m-player symmetric game has only one
set in its symmetry partition, which contains every player. On the other
hand, for an m-player game in which every player has her own strategies and

payoffs, the symmetry partition is a set of singletons, one for each player.
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Example 20 (Symmetry Partition). We take Example 7 and modify it so it

now has the following rules:

e players II and III effectively play a 2-player rock-paper-scissors game
for the pot

e if they tie, the pot is shared between all 3 players

e it does not matter which strateqy player I plays

The game’s payoff profiles are as in Figure C.1 (tuples correspond to payoffs
for players (LILIII)). From them, we can say that the symmetry partition of

I
I=R,P,S R P S
R1(2,2,2) (0,0,6) (0,6,0)
II'P|(0,60) (222) (0,0,6)
S|(0,0,6) (0,6,0) (2,2,2)

Figure C.1: Modified Rock-Paper-Scissors Payoffs
this game is {{I1,111},{I}}.

Definition 37 (The Genetic Game Algorithm for a Strategic m-player Game).
The GGA for a strategic m-player game G = (I, (A;), (u;)), consists of:

1. a collection (Dj) ey, with each D; C Aj, (A; being the symmetry par-

tition j’s actions), and D; having 2% elements for some k; € N,

2. the evaluation functions:

e /T, : D; — Bj (an invertible encode function),

e /T, : B; — Dj (the inverse of encode, the decode function)
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o ITy: xies(Dy)" — ((Ry)")M! (fitness)
where B; = {0,1} (k; is as in point 1),and j € J,
3. the genetic functions:
o (ITHM2. B? x (R§)" — B (selection)
o (ITHM2. B — B} (crossover)
e /T, : B — Bj (mutation)

4. the terminating condition function T, : B" x N — {true, false} - its

mput is a population and its generation number,

5. an m-vector (Y;(0))ey of strategy n-tuples, Y;(0) € D% (with n a mul-
tiple of 2), called the initial population,
Then the population sequence ()Zj(p))peN, Xj(p) € B} is obtained
using the following:
— jTe,n(ﬁ) fO?” p= 0
Xj(p) = (C.1)
(p17p27"'7pn) fO?”]_ SPSC
where Vi =1,...,5, Vj € J,
(P2im1.p2) = T2 (TLCOTIXG (0 = 1) T 0Tan(X(p = 1)) (C2)

In the above expressions, the terminating generation c € N is a number

that satisfies the following conditions:
0<j<c=TI(X(),j) = false , and (C.3)
Ty(X(c),c) = true. (C4)

The GGA for extensive games is adapted in a similar way:
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Definition 38 (The Genetic Game Algorithm for an Extensive m-player
Game). The GGA for an extensive m-player game G = (N, H, P, (1;), (2:))

1s defined in exactly the same way as in Definition 37, except that:

e instead of (D;)jen, we have (W;)jen, a collection of subsets of player j
strategies for the game G, with W; having 2% elements for some k; € N,

and

e we replace every instance of J with N
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